What is it about?

Intelligent transport system (ITS), owing to its potential to enhance road safety and improve traffic management have attracted attention from automotive industries and academia in recent years. The underlying technology i.e., vehicular ad-hoc networks (VANETs) provide a means for vehicles to intelligently exchange messages regarding road and traffic conditions to enhance safety. VANETs, which is a subpart of Intelligent Transport System (ITS) uses the IEEE 802.11P standard for the wireless communication among vehicles. A wireless ad hoc network of vehicles is established to improve road safety, comfort, security, and traffic efficiency. Wireless communication in ITS leads to many security and privacy challenges. Security and privacy of ITS are important issues that demand incorporation of confidentiality, privacy, authentication, integrity, non-repudiation, and restrictive obscurity. In order to ensure the privacy of vehicles during communication, it is required that the real identity of vehicles should not be revealed. There must be robust and efficient security and privacy mechanisms for the establishment of a reliable and trustworthy network. Therefore, we proposed Advanced Strong Pseudonym based Authentication (ASPA), which is a distributed framework to handle the security and privacy issues of vehicle communications in ITS. ASPA only allows vehicles with valid pseudonyms to communicate in ITS. Pseudonyms are assigned to vehicles in a secure manner. The pseudonym mappings of vehicles are stored at different locations to avoid any chance of vehicle pseudonyms certificates linkability. In addition, the most recent communication pseudonyms of a malicious vehicle are revoked and are stored in the Certificate Revocation List (CRL) that results in small size of the CRL. Therefore, the CRL size does not increase exponentially. The distributed framework of ASPA guarantees, the vehicles privacy preservation in the real identities mapping and revocation phase. The empirical results prove that ASPA is robust and efficient with low computational cost, overhead ratio, average latency, and an increased delivery ratio.

Featured Image

Why is it important?

Intelligent transport system (ITS), owing to its potential to enhance road safety and improve traffic management have attracted attention from automotive industries and academia in recent years. The underlying technology i.e., vehicular ad-hoc networks (VANETs) provide a means for vehicles to intelligently exchange messages regarding road and traffic conditions to enhance safety. VANETs, which is a subpart of Intelligent Transport System (ITS) uses the IEEE 802.11P standard for the wireless communication among vehicles. A wireless ad hoc network of vehicles is established to improve road safety, comfort, security, and traffic efficiency. Wireless communication in ITS leads to many security and privacy challenges. Security and privacy of ITS are important issues that demand incorporation of confidentiality, privacy, authentication, integrity, non-repudiation, and restrictive obscurity. In order to ensure the privacy of vehicles during communication, it is required that the real identity of vehicles should not be revealed. There must be robust and efficient security and privacy mechanisms for the establishment of a reliable and trustworthy network. Therefore, we proposed Advanced Strong Pseudonym based Authentication (ASPA), which is a distributed framework to handle the security and privacy issues of vehicle communications in ITS. ASPA only allows vehicles with valid pseudonyms to communicate in ITS. Pseudonyms are assigned to vehicles in a secure manner. The pseudonym mappings of vehicles are stored at different locations to avoid any chance of vehicle pseudonyms certificates linkability. In addition, the most recent communication pseudonyms of a malicious vehicle are revoked and are stored in the Certificate Revocation List (CRL) that results in small size of the CRL. Therefore, the CRL size does not increase exponentially. The distributed framework of ASPA guarantees, the vehicles privacy preservation in the real identities mapping and revocation phase. The empirical results prove that ASPA is robust and efficient with low computational cost, overhead ratio, average latency, and an increased delivery ratio.

Perspectives

Intelligent transport system (ITS), owing to its potential to enhance road safety and improve traffic management have attracted attention from automotive industries and academia in recent years. The underlying technology i.e., vehicular ad-hoc networks (VANETs) provide a means for vehicles to intelligently exchange messages regarding road and traffic conditions to enhance safety. VANETs, which is a subpart of Intelligent Transport System (ITS) uses the IEEE 802.11P standard for the wireless communication among vehicles. A wireless ad hoc network of vehicles is established to improve road safety, comfort, security, and traffic efficiency. Wireless communication in ITS leads to many security and privacy challenges. Security and privacy of ITS are important issues that demand incorporation of confidentiality, privacy, authentication, integrity, non-repudiation, and restrictive obscurity. In order to ensure the privacy of vehicles during communication, it is required that the real identity of vehicles should not be revealed. There must be robust and efficient security and privacy mechanisms for the establishment of a reliable and trustworthy network. Therefore, we proposed Advanced Strong Pseudonym based Authentication (ASPA), which is a distributed framework to handle the security and privacy issues of vehicle communications in ITS. ASPA only allows vehicles with valid pseudonyms to communicate in ITS. Pseudonyms are assigned to vehicles in a secure manner. The pseudonym mappings of vehicles are stored at different locations to avoid any chance of vehicle pseudonyms certificates linkability. In addition, the most recent communication pseudonyms of a malicious vehicle are revoked and are stored in the Certificate Revocation List (CRL) that results in small size of the CRL. Therefore, the CRL size does not increase exponentially. The distributed framework of ASPA guarantees, the vehicles privacy preservation in the real identities mapping and revocation phase. The empirical results prove that ASPA is robust and efficient with low computational cost, overhead ratio, average latency, and an increased delivery ratio.

Qazi Ejaz Ali
University of Peshawar

Read the Original

This page is a summary of: ASPA: Advanced Strong Pseudonym based Authentication in Intelligent Transport System, PLoS ONE, August 2019, PLOS,
DOI: 10.1371/journal.pone.0221213.
You can read the full text:

Read
Open access logo

Resources

Contributors

The following have contributed to this page