What is it about?

The paper presents a sensitivity analysis of two main parameters used in a mathematical model able to evaluate the effects of changing hydrology on the growth of riparian vegetation along rivers and its effects on the cross-section width.

Featured Image

Why is it important?

Due to a lack of data in existing literature, in a past study the schematization proposed here was applied only to two large rivers, assuming steady conditions for the vegetational carrying capacity and coupling the vegetal model with a 1D description of the river morphology. In this paper, the limitation set by steady conditions is overcome, imposing the vegetational evolution dependent upon the initial plant population and the growth rate, which represents the potential growth of the overall vegetation along the watercourse. The sensitivity analysis shows that, regardless of the initial population density, the growth rate can be considered the main parameter defining the development of riparian vegetation, but it results site-specific effects, with significant differences for large and small rivers. Despite the numerous simplifications adopted and the small database analyzed, the comparison between measured and computed river widths shows a quite good capability of the model in representing the typical interactions between riparian vegetation and water flow occurring along watercourses. After a thorough calibration, the relatively simple structure of the code permits further developments and applications to a wide range of alluvial rivers.

Perspectives

The present work points out the importance of two biological parameters in defining the active river width by means of a simplified mathematical model. Indeed, the sensitivity analysis of vegetation growth rate and initial density reported here highlights the feedback of such parameters in computing the active width, frequently assumed only as dependent of the water discharge (i.e., regime equation). For this first calibration, the model is applied to a relatively small number of cross-sections of small and large rivers, showing the validity of the hypotheses assumed, though highlighting some limitations related to the parameters adopted during the simulations and possible biases in reproducing the measured widths due to many constraints (e.g., river discharges, morphological and biological parameters, etc.). The present model structure is capable of reproducing small and large river widths, but needs improvements to simulate a larger variability of active widths. Notwithstanding the several simplifications adopted in the model and the small database used, the outcomes of this preliminary sensitivity analysis suggest that the basic concepts utilized in the present approach might have a general validity and, therefore, the model could be applied to future case studies aimed at confirming its potential for modelling different environmental conditions. Further research is also necessary: (i) in the estimation of the growth rate, which creates site-specific effects and, therefore, requires a careful evaluation to limit errors in simulating the riparian vegetation growth; (ii) in the definition of the long-term evolution of riparian vegetation, assuming a temporal horizon characterized by a series of consecutive hydrological years; (iii) in the implementation of the model structure, to simulate a larger variability of river widths; (iv) in the integration of this 2D description of the cross-sections with 1D and even 0D models to simulate the very long-term (geological) evolution of rivers.

Dr Michael Nones
Institute of Geophysics - Polish Academy of Sciences

Read the Original

This page is a summary of: Sensitivity Analysis of a Riparian Vegetation Growth Model, Environments, November 2016, MDPI AG,
DOI: 10.3390/environments3040030.
You can read the full text:

Read

Contributors

The following have contributed to this page