What is it about?

A B S T R A C T In the present paper, an experimental analysis of a solar water heating collector with an integrated latent heat storage unit is presented. With the purpose to determine the performance of a device on a lab scale, but with commercial features, a flat plate solar collector with phase change material (PCM) containers under the absorber plate was constructed and tested. PCM used was a commercial semi-refined light paraffin with a melting point of 60°C. Tests were carried out in outdoor conditions from October 2016 to March 2017 starting at 7:00 AM until the collector does not transfer heat to the water after sunset. Performance variables as water inlet temperature, outlet temperature, mass flow and solar radiation were measured in order to determine a useful heat and the collector efficiency. Furthermore, operating temperatures of the glass cover, air gap, absorber plate, and PCM containers are presented. Other external variables as ambient temperature, humidity and wind speed were measured with a weather station located next to the collector. The developed prototype reached an average thermal efficiency of 24.11% and a maximum outlet temperature of 50°C. Results indicate that the absorber plate reached the PCM melting point in few cases, this suggests that the use of a PCM with a lower melting point could be a potential strategy to increase thermal storage. A thermal analysis and conclusions of the device performance are discussed.

Featured Image

Why is it important?

Experimental analysis of a flat plate solar collector with integrated latent heat thermal storage *Mauricio, Carmona1, Mario Palacio2, ArnoldMartínez3 1 Mechanical Engineering Department, Universidad del Norte, Colombia 2 Faculty of Mechanical and Industrial Engineering, Universidad PontificiaBolivariana, Colombia 3 Mechanical Engineering Department, Universidad de Córdoba, Colombia 1E mail: mycarmona@uninorte.edu.co,2E mail: mario.palaciov@upb.edu.co A B S T R A C T In the present paper, an experimental analysis of a solar water heating collector with an integrated latent heat storage unit is presented. With the purpose to determine the performance of a device on a lab scale, but with commercial features, a flat plate solar collector with phase change material (PCM) containers under the absorber plate was constructed and tested. PCM used was a commercial semi-refined light paraffin with a melting point of 60°C. Tests were carried out in outdoor conditions from October 2016 to March 2017 starting at 7:00 AM until the collector does not transfer heat to the water after sunset. Performance variables as water inlet temperature, outlet temperature, mass flow and solar radiation were measured in order to determine a useful heat and the collector efficiency. Furthermore, operating temperatures of the glass cover, air gap, absorber plate, and PCM containers are presented. Other external variables as ambient temperature, humidity and wind speed were measured with a weather station located next to the collector. The developed prototype reached an average thermal efficiency of 24.11% and a maximum outlet temperature of 50°C. Results indicate that the absorber plate reached the PCM melting point in few cases, this suggests that the use of a PCM with a lower melting point could be a potential strategy to increase thermal storage. A thermal analysis and conclusions of the device performance are discussed. CONTEMPORARY URBAN AFFAIRS (2017) 1(3), 7-12. https://doi.org/10.25034/ijcua.2018.36zd72 www.ijcua.com Copyright © 2017 Contemporary Urban Affairs. All rights reserved. 1. Introduction Solar energy is the most widely available energy source in the world. However, it presents some obstacles to its implementation such as sensitivity to climatic conditions and intermittency. Therefore, it is necessary to develop technologies that allow storing solar energy for the periods in which it is not available, or its power is low. Two common methods of storing solar thermal energy are sensible and latent heat storage. While sensible heat is more common in practical applications, latent heat storage provides higher storage density, with narrow temperature variation. (Abhat, 1983) reported one of the earliest reviews on latent heat thermal storage. (Zalba et al., 2003) reviewed thermal energy storage with PCM and its heat transfer analysis and applications. (Farid et al., 2004; Kenisarin and Mahkamov, 2007; Nkwetta and Haghighat, 2014; Sharma et al., 2009) reviewed solar energy storage using phase change materials. (Chandel and Agarwal, 2017) Reviewed the current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. (Pandey and Chaurasiya, 2017) reviewed the analysis and development of solar flat plate collectors. Although numerous works on latent heat storage, no commercial solar heaters with built-in PCM storage have been reported. However, preliminary studies in laboratory prototypes have shown considerable increases in efficiency and supply capacity. (Kürklü et al., 2002) found a large difference between ambient temperature and water temperature both at day and at night. With the experimental techniques used, it was not possible to determine the phase change point at least in a general approach. No performance comparison is made against traditional devices. However they showed that its prototype has advantages in manufacturing cost and total weight for commercial devices, although it does not include an energy analysis. In countries with tropical climates, no scientific references have been foundin studies of this kind of technology, in spite of the great capacity of available solar energy, quite possibly due to the lack of suitable commercial PCMs for this application. (Mehling et al., 2003) presented experimental results and numerical simulation of a water tank with a PCM module using an explicit finite-difference method. Experiments and simulations indicated an increase in energy density of the tank of 20% to 45%. (Canbazoglu et al., 2005) Analyzed experimentally the time variations of the water temperatures at the midpoint of the heat storage tank of a solar heating system with sodium thiosulfate pentahydrate as PCM. It was obtained an increase in the produced hot water mass and total heat accumulated approximately 2.59–3.45 times of the conventional solar water-heating system. (Cabeza et al., 2006) constructed an experimental solar pilot plant to test the PCM behavior in real conditions. It was obtained a discharge temperature stabilization near to 54 1C for a period of time between 10 and 12 h. (Mettawee and Assassa, 2006)performed parametric studies of different operating conditions, concluding that as the material melts, the heat transfer by convection increases the speed of the accumulation process. (Koca et al., 2008) performed an analysis of energy and exergy a latent heat storage system with phase change material (PCM) for a flat-plate solar collector. The obtained experimental data showed that exergy efficiencies of latent heat storage systems with PCM are very low. However, the area of collector surface was smaller than that of the PCM surface area. As a result of this, the cost of the latent heat storage system was high and outlet temperature obtained was low. (Bouadila et al., 2014) have developed an experimental study on a solar flat plate water heater with an accumulation of thermal energy in the collector using a PCM. Experimental measurements ascertain that the outlet temperature was not affected by the severe global solar radiation fluctuations. The solar collector remains a uniform useful heat around 400W during 5 h after sunset. (Serale et al., 2014) present an approach to increase the performance of flat collectors based on the exploitation of the latent heat of the heat carrier fluid. The aim of this paper is to analyze experimentally the performance of a lab-scale solar collector built with commercial features and a latent heat storage unit inside it. 2. Method and materials It was designed and constructed a flat plate solar collector prototype with a cavity to place macro-encapsulated PCM under the absorber plate. A schematic representation of the prototype is shown in Fig. 1. Further details of the collector are presented in Fig. 2 and described in Table 1. The PCM was microencapsulated in 4 rectangular steel containers of 4000 X 4000 X 30 mm. Each container was filled with 3.35 kg of semi refined paraffin wax with a nominal melting point between 58-60 °C.

Perspectives

Experimental analysis of a flat plate solar collector with integrated latent heat thermal storage *Mauricio, Carmona1, Mario Palacio2, ArnoldMartínez3 1 Mechanical Engineering Department, Universidad del Norte, Colombia 2 Faculty of Mechanical and Industrial Engineering, Universidad PontificiaBolivariana, Colombia 3 Mechanical Engineering Department, Universidad de Córdoba, Colombia 1E mail: mycarmona@uninorte.edu.co,2E mail: mario.palaciov@upb.edu.co A B S T R A C T In the present paper, an experimental analysis of a solar water heating collector with an integrated latent heat storage unit is presented. With the purpose to determine the performance of a device on a lab scale, but with commercial features, a flat plate solar collector with phase change material (PCM) containers under the absorber plate was constructed and tested. PCM used was a commercial semi-refined light paraffin with a melting point of 60°C. Tests were carried out in outdoor conditions from October 2016 to March 2017 starting at 7:00 AM until the collector does not transfer heat to the water after sunset. Performance variables as water inlet temperature, outlet temperature, mass flow and solar radiation were measured in order to determine a useful heat and the collector efficiency. Furthermore, operating temperatures of the glass cover, air gap, absorber plate, and PCM containers are presented. Other external variables as ambient temperature, humidity and wind speed were measured with a weather station located next to the collector. The developed prototype reached an average thermal efficiency of 24.11% and a maximum outlet temperature of 50°C. Results indicate that the absorber plate reached the PCM melting point in few cases, this suggests that the use of a PCM with a lower melting point could be a potential strategy to increase thermal storage. A thermal analysis and conclusions of the device performance are discussed. CONTEMPORARY URBAN AFFAIRS (2017) 1(3), 7-12. https://doi.org/10.25034/ijcua.2018.36zd72 www.ijcua.com Copyright © 2017 Contemporary Urban Affairs. All rights reserved. 1. Introduction Solar energy is the most widely available energy source in the world. However, it presents some obstacles to its implementation such as sensitivity to climatic conditions and intermittency. Therefore, it is necessary to develop technologies that allow storing solar energy for the periods in which it is not available, or its power is low. Two common methods of storing solar thermal energy are sensible and latent heat storage. While sensible heat is more common in practical applications, latent heat storage provides higher storage density, with narrow temperature variation. (Abhat, 1983) reported one of the earliest reviews on latent heat thermal storage. (Zalba et al., 2003) reviewed thermal energy storage with PCM and its heat transfer analysis and applications. (Farid et al., 2004; Kenisarin and Mahkamov, 2007; Nkwetta and Haghighat, 2014; Sharma et al., 2009) reviewed solar energy storage using phase change materials. (Chandel and Agarwal, 2017) Reviewed the current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. (Pandey and Chaurasiya, 2017) reviewed the analysis and development of solar flat plate collectors. Although numerous works on latent heat storage, no commercial solar heaters with built-in PCM storage have been reported. However, preliminary studies in laboratory prototypes have shown considerable increases in efficiency and supply capacity. (Kürklü et al., 2002) found a large difference between ambient temperature and water temperature both at day and at night. With the experimental techniques used, it was not possible to determine the phase change point at least in a general approach. No performance comparison is made against traditional devices. However they showed that its prototype has advantages in manufacturing cost and total weight for commercial devices, although it does not include an energy analysis. In countries with tropical climates, no scientific references have been foundin studies of this kind of technology, in spite of the great capacity of available solar energy, quite possibly due to the lack of suitable commercial PCMs for this application. (Mehling et al., 2003) presented experimental results and numerical simulation of a water tank with a PCM module using an explicit finite-difference method. Experiments and simulations indicated an increase in energy density of the tank of 20% to 45%. (Canbazoglu et al., 2005) Analyzed experimentally the time variations of the water temperatures at the midpoint of the heat storage tank of a solar heating system with sodium thiosulfate pentahydrate as PCM. It was obtained an increase in the produced hot water mass and total heat accumulated approximately 2.59–3.45 times of the conventional solar water-heating system. (Cabeza et al., 2006) constructed an experimental solar pilot plant to test the PCM behavior in real conditions. It was obtained a discharge temperature stabilization near to 54 1C for a period of time between 10 and 12 h. (Mettawee and Assassa, 2006)performed parametric studies of different operating conditions, concluding that as the material melts, the heat transfer by convection increases the speed of the accumulation process. (Koca et al., 2008) performed an analysis of energy and exergy a latent heat storage system with phase change material (PCM) for a flat-plate solar collector. The obtained experimental data showed that exergy efficiencies of latent heat storage systems with PCM are very low. However, the area of collector surface was smaller than that of the PCM surface area. As a result of this, the cost of the latent heat storage system was high and outlet temperature obtained was low. (Bouadila et al., 2014) have developed an experimental study on a solar flat plate water heater with an accumulation of thermal energy in the collector using a PCM. Experimental measurements ascertain that the outlet temperature was not affected by the severe global solar radiation fluctuations. The solar collector remains a uniform useful heat around 400W during 5 h after sunset. (Serale et al., 2014) present an approach to increase the performance of flat collectors based on the exploitation of the latent heat of the heat carrier fluid. The aim of this paper is to analyze experimentally the performance of a lab-scale solar collector built with commercial features and a latent heat storage unit inside it. 2. Method and materials It was designed and constructed a flat plate solar collector prototype with a cavity to place macro-encapsulated PCM under the absorber plate. A schematic representation of the prototype is shown in Fig. 1. Further details of the collector are presented in Fig. 2 and described in Table 1. The PCM was microencapsulated in 4 rectangular steel containers of 4000 X 4000 X 30 mm. Each container was filled with 3.35 kg of semi refined paraffin wax with a nominal melting point between 58-60 °C.

Journal of Contemporary Urban Affairs
Girne American University

Read the Original

This page is a summary of: Experimental analysis of a flat plate solar collector with integrated latent heat thermal storage, Journal of Contemporary Urban Affairs, November 2017, Journal of Contemporary Urban Affairs (JCUA), DOI: 10.25034/ijcua.2018.36zd72.
You can read the full text:

Read

Contributors

The following have contributed to this page