What is it about?

A B S T R A C T The hydroelectric plants are first in the Brazilian energy matrix, so irregularities in the rainfall regime can affect the energy generation, thus evidencing the need to know the rainfall distribution in the studied area. This work aimed to evaluate possible analysis of the impacts of climate change on the rainfall regime in the Machadinho hydroelectric region. For the research development, the IPCC-AR5 pessimistic scenario was used, representing a scenario with a continuous population growth and high carbon dioxide emissions. From the historical series and organized projections, precipitation anomalies were calculated. Analyzing the difference between the average of the month and the climatological normal,it was inferred that the model used presented a positive trend for precipitation in the period from 2026 - 2100, projecting anomalies between 25 and 200 mm per month. A greater amplitude is observed in the precipitation of 2076-2100, indicating an increase in the occurrence of extreme events of precipitation, mainly in the spring period. Considering that the rains in the Machadinho hydroelectric region are increasing in the scenarios analyzed, the average water level in the reservoir of the plant tends to increase.

Featured Image

Why is it important?

Evaluation Rainfall Regime at the Hydroelectric Power Plant toward Climate Change *¹FranciscoPereira, ²Elison EduardoBierhals; ³José LeandroNéris, 4MatheusRippel, 5ClaudinéiaBrazil,6LucianeSalvi, 7NeiMarçal 1, 2, 5Energy Engineering, State University of Rio Grande do Sul, Brazil 3,4,5,6Environmental and Sanitary Engineering, Don Bosco College of Porto Alegre, Brazil E mail:fbp.francisco@gmail.com , E mail: eduardojb_energia@hotmail.com , 3 E mail: matheuslrippel@gmail.com 4 E mail: leandro_melgar@hotmail.com , 5 E mail: neiabrazil@yahoo.com, 6 E mail: salvi.faculdade@dombosco.net 7Email: marcaluergs@gmail.com A B S T R A C T The hydroelectric plants are first in the Brazilian energy matrix, so irregularities in the rainfall regime can affect the energy generation, thus evidencing the need to know the rainfall distribution in the studied area. This work aimed to evaluate possible analysis of the impacts of climate change on the rainfall regime in the Machadinho hydroelectric region. For the research development, the IPCC-AR5 pessimistic scenario was used, representing a scenario with a continuous population growth and high carbon dioxide emissions. From the historical series and organized projections, precipitation anomalies were calculated. Analyzing the difference between the average of the month and the climatological normal,it was inferred that the model used presented a positive trend for precipitation in the period from 2026 - 2100, projecting anomalies between 25 and 200 mm per month. A greater amplitude is observed in the precipitation of 2076-2100, indicating an increase in the occurrence of extreme events of precipitation, mainly in the spring period. Considering that the rains in the Machadinho hydroelectric region are increasing in the scenarios analyzed, the average water level in the reservoir of the plant tends to increase. CONTEMPORARY URBAN AFFAIRS (2017) 1(3), 62-65. https://doi.org/10.25034/ijcua.2018.3682 www.ijcua.com Copyright © 2017 Contemporary Urban Affairs. All rights reserved. 1. Introduction The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The changes have been associated with the issue of energy, especially renewable energies, which are directly linked to climate variations. According to Moraes (2013) in 1988, the Intergovernmental Panel on Climate Change (IPCC) was created through an initiative of the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP). The IPCC was established with the mission of evaluating research, interpreting it, and gathering all relevant information, both technical, scientific and socioeconomic, into comprehensive, easily understood and accessible reports by all in communities, including decision makers (Grimm , 2016; Moraes, 2013). According to Nimer (1989), rainfall occurred in Brazil’s southern region between 1990 and 2005 can be described as well distributed, with maxima ranging from 1200 to 2100 mm / year. The hydroelectric plants are in the first position in the Brazilian energy matrix, evidencing, therefore, the need to know the distribution of the pluviometric regime of the region. The main objective of this work is to present an analysis of the impacts of climate change on rainfall in the Machadinho’s hydroelectric power plant region, which has an installed capacity of 1,140 MW and is located in the states of Santa Catarina and Rio Grande do Sul. 2. Material and Methods 2.1 Study area description An evaluation of precipitation projections in the region of the Machadinho Hydroelectric Power Plant, located in the Uruguay River basin (Figure 1). According to Schorket. Al. (2012), a Machadinho Hydroelectric Power Plant is located in the states of Santa Catarina and the Rio Grande do Sul between latitudes 27º31 'and 27º46' south and longitudes 51º47 'and 51º11' west. The Basin extends between the parallels of 27º and 34º South latitude and the meridians of 49º30 'and 58º5'W. It covers an area of approximately 384,000 km2, of which 174,494 km2 are located in Brazil, equivalent to 2% of the Brazilian territory. According to Andreolli ,(2003) its Brazilian portion is in the southern region, comprising 46,000 km2 of the State of Santa Catarina and 130,000 km2 in the State of Rio Grande do Sul. It is bordered to the north and northeast by the Serra Geral, to the south by the border with the Eastern Republic of Uruguay, east by the Central Depression Riograndense and the west by Argentina. Figure 1. Study area localization. 2.2 Data description and climate model The scenarios were generated using the models used in the Fifth Report of the Intergovernmental Panel on Climate Change (IPCC-AR5), based on an analysis of the seasonal variability of precipitation and the consequent variation in energy production. The database used in this research is part of the Phase 5 Intercomparison of Matching Models (CMIP5) and contributed to the preparation of the fifth IPCC-AR5 report. The data were extracted from ACCESS model (The Australian Community Climate and Earth System Simulator). According to Van Vuurenet al., (2011) in AR5 the scenarios are organized according to the RCPs. In this research, RCP 8.5 scenario was used which represents a scenario with a continuous population growth, resulting in high carbon dioxide emissions, with an increase Up to 4 ° C. According to Silveiraet al, (2016), this scenario is considered to be the most pessimistic for the 21st century in terms of greenhouse gas emissions, consistent with no policy change to reduce emissions and strong reliance on fossil fuels. The climatic projections of the precipitation series were divided into three scenarios: Scenario-1 (2026-2050), Scenario-2 (2051-2075) and Scenario-3 (2076-2100), the seasonal analysis was done for each of these scenarios. 3. Methodology The monthly precipitation data were extracted from the IPCC-AR5 database, the information is provided in grid points, and Grads (Grid Analysis and Display System) software were used to extract the results. According to Souza (2004) Grads is a system of visualization and analysis of data in grid points, it works with binary data matrices, in which the variables can have up to four dimensions

Perspectives

Evaluation Rainfall Regime at the Hydroelectric Power Plant toward Climate Change *¹FranciscoPereira, ²Elison EduardoBierhals; ³José LeandroNéris, 4MatheusRippel, 5ClaudinéiaBrazil,6LucianeSalvi, 7NeiMarçal 1, 2, 5Energy Engineering, State University of Rio Grande do Sul, Brazil 3,4,5,6Environmental and Sanitary Engineering, Don Bosco College of Porto Alegre, Brazil E mail:fbp.francisco@gmail.com , E mail: eduardojb_energia@hotmail.com , 3 E mail: matheuslrippel@gmail.com 4 E mail: leandro_melgar@hotmail.com , 5 E mail: neiabrazil@yahoo.com, 6 E mail: salvi.faculdade@dombosco.net 7Email: marcaluergs@gmail.com A B S T R A C T The hydroelectric plants are first in the Brazilian energy matrix, so irregularities in the rainfall regime can affect the energy generation, thus evidencing the need to know the rainfall distribution in the studied area. This work aimed to evaluate possible analysis of the impacts of climate change on the rainfall regime in the Machadinho hydroelectric region. For the research development, the IPCC-AR5 pessimistic scenario was used, representing a scenario with a continuous population growth and high carbon dioxide emissions. From the historical series and organized projections, precipitation anomalies were calculated. Analyzing the difference between the average of the month and the climatological normal,it was inferred that the model used presented a positive trend for precipitation in the period from 2026 - 2100, projecting anomalies between 25 and 200 mm per month. A greater amplitude is observed in the precipitation of 2076-2100, indicating an increase in the occurrence of extreme events of precipitation, mainly in the spring period. Considering that the rains in the Machadinho hydroelectric region are increasing in the scenarios analyzed, the average water level in the reservoir of the plant tends to increase. CONTEMPORARY URBAN AFFAIRS (2017) 1(3), 62-65. https://doi.org/10.25034/ijcua.2018.3682 www.ijcua.com Copyright © 2017 Contemporary Urban Affairs. All rights reserved. 1. Introduction The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The changes have been associated with the issue of energy, especially renewable energies, which are directly linked to climate variations. According to Moraes (2013) in 1988, the Intergovernmental Panel on Climate Change (IPCC) was created through an initiative of the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP). The IPCC was established with the mission of evaluating research, interpreting it, and gathering all relevant information, both technical, scientific and socioeconomic, into comprehensive, easily understood and accessible reports by all in communities, including decision makers (Grimm , 2016; Moraes, 2013). According to Nimer (1989), rainfall occurred in Brazil’s southern region between 1990 and 2005 can be described as well distributed, with maxima ranging from 1200 to 2100 mm / year. The hydroelectric plants are in the first position in the Brazilian energy matrix, evidencing, therefore, the need to know the distribution of the pluviometric regime of the region. The main objective of this work is to present an analysis of the impacts of climate change on rainfall in the Machadinho’s hydroelectric power plant region, which has an installed capacity of 1,140 MW and is located in the states of Santa Catarina and Rio Grande do Sul. 2. Material and Methods 2.1 Study area description An evaluation of precipitation projections in the region of the Machadinho Hydroelectric Power Plant, located in the Uruguay River basin (Figure 1). According to Schorket. Al. (2012), a Machadinho Hydroelectric Power Plant is located in the states of Santa Catarina and the Rio Grande do Sul between latitudes 27º31 'and 27º46' south and longitudes 51º47 'and 51º11' west. The Basin extends between the parallels of 27º and 34º South latitude and the meridians of 49º30 'and 58º5'W. It covers an area of approximately 384,000 km2, of which 174,494 km2 are located in Brazil, equivalent to 2% of the Brazilian territory. According to Andreolli ,(2003) its Brazilian portion is in the southern region, comprising 46,000 km2 of the State of Santa Catarina and 130,000 km2 in the State of Rio Grande do Sul. It is bordered to the north and northeast by the Serra Geral, to the south by the border with the Eastern Republic of Uruguay, east by the Central Depression Riograndense and the west by Argentina. Figure 1. Study area localization. 2.2 Data description and climate model The scenarios were generated using the models used in the Fifth Report of the Intergovernmental Panel on Climate Change (IPCC-AR5), based on an analysis of the seasonal variability of precipitation and the consequent variation in energy production. The database used in this research is part of the Phase 5 Intercomparison of Matching Models (CMIP5) and contributed to the preparation of the fifth IPCC-AR5 report. The data were extracted from ACCESS model (The Australian Community Climate and Earth System Simulator). According to Van Vuurenet al., (2011) in AR5 the scenarios are organized according to the RCPs. In this research, RCP 8.5 scenario was used which represents a scenario with a continuous population growth, resulting in high carbon dioxide emissions, with an increase Up to 4 ° C. According to Silveiraet al, (2016), this scenario is considered to be the most pessimistic for the 21st century in terms of greenhouse gas emissions, consistent with no policy change to reduce emissions and strong reliance on fossil fuels. The climatic projections of the precipitation series were divided into three scenarios: Scenario-1 (2026-2050), Scenario-2 (2051-2075) and Scenario-3 (2076-2100), the seasonal analysis was done for each of these scenarios. 3. Methodology The monthly precipitation data were extracted from the IPCC-AR5 database, the information is provided in grid points, and Grads (Grid Analysis and Display System) software were used to extract the results. According to Souza (2004) Grads is a system of visualization and analysis of data in grid points, it works with binary data matrices, in which the variables can have up to four dimensions

Journal of Contemporary Urban Affairs
Girne American University

Read the Original

This page is a summary of: Evaluation Rainfall Regime at the Hydroelectric Power Plant Toward Climate Change, Journal of Contemporary Urban Affairs, September 2017, Journal of Contemporary Urban Affairs (JCUA), DOI: 10.25034/ijcua.2018.3682.
You can read the full text:

Read

Contributors

The following have contributed to this page