What is it about?

During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them.

Featured Image

Why is it important?

The child’s acquisition of language has been suggested to rely on the ability to build hierarchically structured representations from sequential inputs. Does a similar mechanism also underlie the acquisition of geometrical rules? Here, we introduce a learning situation in which human participants had to grasp simple spatial sequences and try to predict the next location. Sequences were generated according to a “geometrical language” endowed with simple primitives of symmetries and rotations, and combinatorial rules. Analyses of error rates of various populations—a group of French educated adults, two groups of 5 years-old French children, and a rare group of teenagers and adults from an Amazonian population, the Mundurukus, who have limited access to formal schooling and a reduced geometrical lexicon—revealed that subjects’ learning indeed rests on internal language-like representations. A theoretical model, based on minimum description length, proved to fit well participants’ behavior, suggesting that human subjects “compress” spatial sequences into a minimal internal rule or program.

Read the Original

This page is a summary of: The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers, PLoS Computational Biology, January 2017, PLOS, DOI: 10.1371/journal.pcbi.1005273.
You can read the full text:

Read

Contributors

The following have contributed to this page