What is it about?
When you experience yourself rotating, your perception of time and space is altered. Specifically, events that actually occur simultaneously, you would experience to be asynchronous. Also, if the signals from your inner ear tell you that you are accelerating, what you think is 'straight ahead' will be displaced from a true central orientation. This paper borrows the mathematics of Einstein's special relativity to explain these distortions. Corresponding to the speed of light in Einstein's theory, my work predicts a limiting angular velocity of perceived rotation (even as objective angular velocity continues to increase). When you experience self-rotation, your eyes move in the opposite direction to compensate. Assuming the maximum velocity of the eyes is the same as the limiting velocity of perceived rotation, the predicted simultaneity distortion is exactly what has been found in experiment.
Featured Image
Photo by Scott Higdon on Unsplash
Why is it important?
When it comes to perceived angular velocities of rotation, the paper suggests that what is experienced has finite limits, even though actual velocities might be infinitely great. Perhaps this is true of other aspects of perception. Neural firing rates also have finite limits, and for sensory neurons it seems that limitless environmental quantities are encoded between these limits in an optimal way (the 'efficient coding hypothesis'). The paper suggests that the transformations of special relativity might have been adopted by the brain to make the mental representation of objective rotation maximally efficient: an 'efficient perception hypothesis'.
Perspectives
Read the Original
This page is a summary of: Efficient self-rotation perception and its relativistic consequences, AIP Advances, March 2021, American Institute of Physics,
DOI: 10.1063/5.0044694.
You can read the full text:
Contributors
The following have contributed to this page