A close examination of under-actuated attitude control subsystem design for future satellite missions’ life extension

  • Quang M. Lam, Itzhak Barkana
  • January 2014, American Institute of Physics
  • DOI: 10.1063/1.4904624

What is it about?

Satellite mission life, maintained and prolonged beyond its typical norm of their expectancy, are primarily dictated by the state of health of its Reaction Wheel Assembly (RWA), especially for commercial GEO satellites since torquer bars are no longer applicable while thruster assistant is unacceptable due to pointing accuracy impact during jet firing. The RWA is the primary set of actuators (as compared to thrusters for orbit maintenance and maneuvering) mainly responsible for the satellite mission for accurately and precisely pointing its payloads to the right targets to conduct its mission operations. The RWA consisting of either a set of four in pyramid or three in orthogonal is the primary set of actuators to allow the satellite to achieve accurate and precise pointing of the satellite payloads towards the desired targets. Future space missions will be required to achieve much longer lives and are currently perceived by the GEO satellite community as an "expected norm" of 20 years or longer. Driven by customers’ demands/goals and competitive market have challenged Attitude Control Subsystems (ACS) engineers to develop better ACS algorithms to address such an emerging need. There are two main directions to design satellite's under-actuated control subsystem: (1) Attitude Feedback with Zero Momentum Principle and (2) Attitude Control by Angular Velocity Tracking via Small Time Local Controllability concept. Successful applications of these control laws have been largely demonstrated via simulation for the rest to rest case. Limited accuracy and oscillatory behaviors are observed in three axes for non-zero wheel momentum while realistic loss of a wheel scenario (i.e., fully actuated to under-actuated) has not been closely examined! This study revisits the under-actuated control design with detailed set ups of multiple scenarios reflecting real life operating conditions which have put current under-actuated control laws mentioned earlier into a re-evaluation mode since rest to rest case is not adequate to truly represent an on orbit failure of a single wheel. The study is intended to facilitate the ACS community to further develop a more practical under-actuated control law and present a path to extend these current thinking to address a more realistic reconfigurable ACS subject to a dynamic transition from a 3 RWs mode to 2 RWs mode.

Read Publication


The following have contributed to this page: Dr Itzhak Barkana

In partnership with: