What is it about?

Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode).

Featured Image

Why is it important?

Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode).

Perspectives

Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode). PS has been synthesized from elemental sulfur by hydrothermal method and characterized using UV–Vis, fluorescence, FTIR, SEM, and XPS analyses. The PS@Au electrode was employed for electrochemical sensing of SPM. In the presence of SPM, a decrease in gold oxide reduction current was noted which is proportional to the concentration of SPM. The decrease in gold oxide reduction (0.5 V) current was attributed to the complexing nature of SPM-PS at the electrode interface. The reason for the decrease in current has been substantiated using XRF, XPS, and spectroelectrochemical studies. Under the optimized conditions, the PS@Au electrode exhibited a linear range of 1.55–250 µM with LOD of 0.511 ± 0.02 µM (3σ). The electrochemical strategy for SPM sensing exhibited better selectivity even in the presence of possible interferents. The selectivity stems from the selective interaction of SPM with PS on the Au electrode surface; the tested amino acids, and other molecules do not complex with PS and hence they could not interfere. The PS@Au electrode has been subjected to the determination of SPM in artificial urine samples and exhibited outstanding performance in the synthetic sample.

Professor Mohammad Mansoob Khan
Universiti Brunei Darussalam

Read the Original

This page is a summary of: Determination of urinary spermine using controlled dissolution of polysulfide modified gold electrode, Microchimica Acta, February 2023, Springer Science + Business Media,
DOI: 10.1007/s00604-023-05664-8.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page