What is it about?

The pervasive Internet of Things (IoT) integration has revolutionized industries such as medicine, environmental care, and urban development. The synergy between IoT devices and 5G cellular networks has further accelerated this transformation, providing ultra-high data rates and ultra-low latency. This connectivity enables various applications, including remote surgery, autonomous driving, virtual reality gaming, and AI-driven smart manufacturing. However, IoT devices’ real-time and high-volume messaging nature exposes them to potential malicious attacks.

Featured Image

Why is it important?

The implementation of encryption in such networks is challenging due to the constraints of IoT devices, including limited memory, storage, and processing bandwidth. In a previous work [1], we proposed an ongoing key construction process, introducing a pivotal pool to enhance network security. The protocol is designed with a probability analysis to ensure the existence of a shared key between any pair of IoT devices, with the predefined probability set by the system designer.

Perspectives

However, our earlier model faced vulnerabilities such as the “parking lot attack” and physical attacks on devices, as highlighted in the conclusion section. We present a complementary solution to address these issues, fortifying our previous protocol against cyber threats. Our approach involves the implementation of an internal Certification Authority (CA) that issues certificates for each IoT device before joining the network.

Richard (Ricky) Smith Jr.

Read the Original

This page is a summary of: Strengthening IoT Network Protocols: A Model Resilient Against Cyber Attacks, IgMin Research, February 2024, IgMin Publications Inc.,
DOI: 10.61927/igmin149.
You can read the full text:

Read

Contributors

The following have contributed to this page