What is it about?
Synthetic approaches to the construction of the benzo[4’,5’]imidazo[2’,1’:6,1]pyrido[2,3-d]pyrimidine system based on heterocyclizations of substituted benzimidazoles and a new alternative strategy based on 2,4,6-trisubstituted pyrimidinyl-5-propanoic acids are considered. The latter method has been shown to be a successful addition to previously described methods, since it allows one to bypass the significant limitations associated with the use of substituted benzimidazoles and allows the introduction of functional substituents at different positions of the heterocycle that are inaccessible by other methods. The available information on derivatives of this heterocyclic system and their biological properties is summarized.
Featured Image
Photo by julien Tromeur on Unsplash
Why is it important?
It is worth noting the importance of the most common azaheterocycles in nature, such as pyrimidines and condensed pyrimidines (purines, pteridines), pyridines, benzimidazoles, which are essential components of all living organisms as nucleic acid bases, coenzymes, mediators of intracellular signals, storage devices and carriers of high-energy phosphates, etc. It is not surprising that synthetic nitrogen-containing heterocycles, which are structural analogues of biologically active natural compounds, are considered as privileged structures in the synthesis of physiologically Active compounds.
Perspectives
It is well known, that polycyclic heteroaromatic compounds based on annelated azaheterocycles, the most important structural feature of which is the planar structure, exhibit high biological activity, including antitumor, antibacterial, antiviral and others [4]. The biological activity of this class of compounds is due to their ability to interact with DNA, being associated with small and large grooves or intercalation between adjacent bases in a double helix, the interaction mechanism of the latter being considered as the main one. In both cases, the secondary structure of DNA is distorted and its functioning is disrupted, and therefore the connections with this mechanism of action are considered as the most promising in developing new-generation drugs for the treatment of tumor diseases and viral and bacterial infections. It should be noted that bi-and tricyclic compounds are best known as intercalating heterocycles, while tetra- and higher-annealed compounds are less well studied, although the possibility of intercalation and the associated pharmacological activity are shown for them
Richard (Ricky) Smith Jr.
Read the Original
This page is a summary of: Benzo[4’,5’]imidazo[2’,1’:6,1]pyrido[2,3-d]pyrimidines: Past and Present, November 2023, IgMin Publications Inc.,
DOI: 10.61927/igmin113.
You can read the full text:
Contributors
The following have contributed to this page







