What is it about?

The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number.

Featured Image

Why is it important?

In conclusion, the antimicrobial susceptibility pattern and MIC values showed 39.29% and 15.63% alteration, respectively of tested antimicrobials as compared to the control strain of C. braakii. The biochemical reactions pattern showed significant (42.42%) alteration as compared to control. Moreover, the biotype numbers of biofield treated strain of C. braakii were also changed in all the treated groups as compared to control. Based on changed biotype numbers after biofield treatment, new species were identified as Citrobacter freundii complex and Citrobacter amalonaticus in treated cells with respect to control Gr. I (77365776; C. braakii). Thus, Mr. Trivedi’s unique biofield treatment could be applied as an alternative therapeutic approach against antimicrobials resistance. Molecular based 16S rDNA analysis showed that the treated lyophilized sample in this experiment was C. braakii and was converted to Citrobacter freundii (GenBank Accession Number: DQ517285) after biofield treatment. However, the nearest homolog genus-species was found to be Citrobacter werkmanii (Accession No. AF025373). Based on these results, it seems that biofield treatment could be used as alternate of existing drug therapy in future.

Read the Original

This page is a summary of: Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen, Journal of Clinical & Medical Genomics, January 2015, OMICS Publishing Group,
DOI: 10.4172/2472-128x.1000129.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page