What is it about?

Tellurium has gained significant attention due to its photoconductivity, piezoelectricity, and thermo conductivity properties. The aim of this study was to evaluate the effect of biofield energy treatment on thermal, physical and atomic properties of tellurium powder. The tellurium powder was equally divided in two parts: control and treated (T). The treated part was subjected to Mr. Trivedi’s biofield energy treatment, whereas the control part was remained untreated. Subsequently, the control and treated samples were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The DSC data showed that latent heat of fusion was decreased by 14.13, 21.90, and 5.55% in treated samples T1, T2, and T3, respectively as compared to the control. However, the melting temperature did not show any change in treated samples as compared to the control. The TGA data showed that the peak width (difference in onset and endset) was increased from 213.67°C (control) to 234.82°C in treated tellurium sample. Besides, XRD results exhibited an alteration in lattice parameter, unit cell volume, density, atomic weight and nuclear charge volume of the treated tellurium powder as compared to the control. In addition, the crystallite sizes were significantly changed on crystalline plane (102) and (110) as 146.05→48.67 nm and 63.01→88.21 nm, respectively in the treated tellurium. The FT-IR spectra did not show any significant change in absorption frequencies in treated sample as compared to the control. Therefore, DSC, TGA and XRD data suggested that Mr. Trivedi’s biofield energy treatment has significantly altered the thermal and physical properties of tellurium powder. Thus, biofield energy treatment could be applied to modulate the thermal and physical properties in semiconductor and chalcogenide glass industries.

Featured Image

Why is it important?

Tellurium (Te), chemically related to selenium and sulfur, is a rare, brittle and silver white metalloid. Tellurium and its related materials have attracted significant attention due to its photoconductivity, piezoelectricity, thermo conductivity and catalytic activities in organic reactions [1-3]. Commercially, it is used in several alloys such as steel and copper to enhance the machinability property. The considerable fraction of tellurium is used in cadmium telluride (CdTe) solar panels and as a semiconductor in various electronics industries [4]. For semiconductor applications, the orientations and size of crystallites play the vital role [5]. Furthermore, tellurium is widely used in the infrared detectors, optical modulators, fluorescent, gas sensor and chalcogenide glasses [6]. In these applications, its thermal properties such as melting point, latent heat of fusion, and thermal conductivities are the important parameters, which control the overall efficiency of the product [7]. Currently, the thermal properties are modulated by using different pressure based techniques, which are studied by various researchers [8,9]. Thus, after considering the importance of crystal structure parameters and thermal properties in industrial application, it is important to use an approach which can modify physical and thermal properties of tellurium. The generation of bioelectricity in heart and brain functions due to the motion of charged particles such as protons, electrons, and ions in the human body is well known [10,11]. Recently, it is reported that the various scientific instruments such as Kirlian photography, polycontrast interference photography (PIP) and resonance field imaging (RFI) can measure the biofield of human body [12]. Furthermore, a human has the ability to harness the energy from environment/Universe and can transmit it to any object (living or non-living) around the Globe. The object(s) always receive the energy and respond in a useful way that is called biofield energy, and this process is known as biofield energy treatment. Moreover, the National center for complementary and alternative medicine (NCCAM) has recommended the uses of alternative CAM therapies (energy-healing) in the healthcare sector [13]. Furthermore, Mr. Trivedi’s unique biofield treatment (The Trivedi Effect®) is known to alter the atomic, physical, structural and thermal characteristics of various metals [14-16] and ceramics [17-19]. Biofield treatment has significantly altered the latent heat of fusion in cadmium powder [20]. Recently, our group reported that biofield treatment has reduced the crystallite size by 28.6% in magnesium powder [21] and altered the bond length of Ti-O in BaTiO3 [22]. The present work was undertaken to evaluate the impact of Mr. Trivedi’s biofield energy treatment on thermal and physical properties of tellurium powder, using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy.

Perspectives

Altogether, the biofield energy treatment has altered the atomic, thermal and physical properties of the tellurium powder. The latent heat of fusion was significantly reduced up to 21.90% in the treated sample as compared to the control. It could be due to decrease in interatomic attraction of the treated tellurium powder after biofield energy treatment. TGA showed that the peak width was increased from 213.67°C (control) to 234.82°C in treated tellurium sample. The XRD data revealed that the crystallite size was significantly reduced on crystalline plane, (102) from 146.05 (control) to 48.67 nm in the treated tellurium sample. However the crystallite size was increased on plane, (110) from 63.01 (control) to 88.21 nm in the treated tellurium sample. In addition, biofield energy treatment also altered the lattice parameter, unit cell volume, density, atomic weight and nuclear charge volume of treated tellurium powder as compared to the control. Thus, the biofield treated tellurium could be more useful in semiconductor and chalcogenide glass industries.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Evaluation of Atomic, Physical and Thermal Properties of Tellurium Powder: Impact of Biofield Energy Treatment, Journal of Electrical & Electronic Systems, January 2015, OMICS Publishing Group,
DOI: 10.4172/2332-0796.1000162.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page