What is it about?

Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure with superior crystallinity in treated Sb2S3 along with significant changes in the lattice parameters, which led to changes in unit cell volume and density. XRD data analysis indicates that crystallite size was increased by around 150% in treated sample. In FT-IR spectra, strong absorption band was observed at 400-700cm-1, which confirms the presence of Sb2S3. Further, the absorption peak intensity in IR spectra was significantly reduced after treatment that was probably due to change in metal sulphur dipolar interaction.

Featured Image

Why is it important?

Antimony Sulfide (Sb2S3) is a semiconductor ceramics belonging to V-VI group of periodic table, which have high thermo-electric power and photosensitivity. Sb2S3 has a wide range of commercial applications in microwave devices, optoelectronic devices and solar cell absorber [1-4]. Sb2S3 fulfils the optoelectronic properties to obtain an electronic band gap in the near-infrared region and the visible region, depending on its crystalline or amorphous nature [5]. Sb2S3 is an important photoconductive semiconductor in the polycrystalline form as orthorhombic crystal structure. The optoelectrical properties of Sb2S3 such as charge carrier transport mechanism, conduction, photoelectric properties makes it a promising material in solar energy industries as a light absorbing material. For solar cell absorber applications, the absorption coefficient and the energy band gap of Sb2S3 plays a crucial role. It is already reported [6-7] that higher absorption coefficient and lower energy band gap improves the performance of an absorber in the solar cell. Furthermore, the energy band gap in Sb2S3 is inversely proportional to its crystallinity [6] and the absorption coefficient of Sb2S3 is directly proportional to its crystallite size [7]. Recently, Sb2S3 powders have been synthesized by conventional methods such as hydrothermal treatment, solvo thermal reaction, sonochemical method and high energy milling [5]. The high energy milling has been frequently used by various researchers to produce nanocrystalline Sb2S3 [5]. In the milling process, energy was normally provided in the form of mechanical or chemical means. Additionally, in conventional milling process many parameters need to be controlled for cost reduction such as power, ball diameter, contamination, time, etc. Therefore, high energy milling through biofield treatment could be a cost effective approach which can effectively modulate the crystalline and physical properties. Researchers all around the world have confirmed that the solid matter consist of energy and once this energy vibrates at a certain frequency, that gives physical, atomic and structural properties to the matter such as shape, size, texture, crystal structure, atomic weight, etc. Similarly, the human body also consists of vibratory energy particles like neutrons, protons, and electrons, and when these charged particles vibrate at certain frequency, an electrical impulse is generated. Consequently varying of these electrical impulses with time, cause generation of magnetic field as per Ampere-Maxwell-Law, which cumulatively form electromagnetic field [8]. Hence, the electromagnetic field generated from the human body is known as biofield. This biofield often vary from person to person based on their physiology and internal dynamic processes. Mr. Trivedi is known for his unique physiology and biofield, through which he has already caused changes in the atomic and physical characteristics in various fields such as material science [9-16], agriculture [17-19], microbiology [20-22], and biotechnology [23,24]. Further, in the field of material science, the said biofield has significantly changed the lattice parameter, surface area, crystallite size and particle size in metals [9], carbon allotropes [11], and ceramics [13,15]. In this paper, we report the impact of Biofield on Sb2S3 powder with respect to its structural, spectral and physical characteristics.

Perspectives

Herein we report the influence of biofield treatment on Sb2S3 powders, and its structural, spectral and physical properties are investigated. The significant increase as well as decrease in particle size and surface area was found in treated Sb2S3 powder, which may be due to agglomeration, fracturing and welding process caused by high energy milling induced through biofield treatment. The surface morphology study by SEM showed internal agglomerated boundaries and sharp angular particles in Sb2S3 powder that was probably due to internal friction and high energy impact during milling. Biofield has significantly altered the both lattice parameter: a and b simultaneously in orthorhombic crystal structure of Sb2S3 powders. This indicates that volumetric stress was probably generated through biofield treatment that resulted into changed density and volume. The significant changes in molecular weight asserted that biofield treatment acts at the atomic and nuclei level. The crystallite size was significantly increased by 150%, indicating the improved absorbance of Sb2S3 after treatment. Additionally, the crystallinity of Sb2S3 powder was also enhanced after biofield treatment that may have led to reduced gap in energy band. Therefore, the novel treated Sb2S3 powder can play an important role towards better solar cell absorber applications.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide, Industrial Engineering & Management, January 2015, OMICS Publishing Group,
DOI: 10.4172/2169-0316.1000165.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page