What is it about?

Bronze, a copper-tin alloy, widely utilizing in manufacturing of gears, bearing, and packing technologies due to its versatile physical, mechanical, and chemical properties. The aim of the present work was to evaluate the effect of biofield treatment on physical and structural properties of bronze powder. Bronze powder was divided into two samples, one served as control and the other sample was received biofield treatment. Control and treated bronze samples were characterized using x-ray diffraction (XRD), particle size analyzer, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. XRD result showed that the unit cell volume was reduced upto 0.78% on day 78 in treated bronze as compared to control. Further, the crystallite size was significantly reduced upto 49.96% in treated bronze sample on day 106 as compared to control. In addition, the biofield treatment has significantly reduced the average particle size upto 18.22% in treated bronze powder as compared to control. SEM data showed agglomerated and welded particles in control bronze powder, whereas fractured morphology at satellites boundaries were observed in treated bronze. The yield strength of bronze powder calculated using Hall-Petch equation, was significantly changed after biofield treatment. The FT-IR analysis showed that there were three new peaks at 464 cm-1, 736 cm-1, and 835 cm-1 observed in treated bronze as compared to control; indicated that the biofield treatment may alter the bond properties in bronze. Therefore, the biofield treatment has substantially altered the characteristics of bronze at physical and structural level.

Featured Image

Why is it important?

Bronze is a metallic alloy, primarily consist of copper and tin in 90:10 ratio, which is also known as “true bronze”. Some other elements such as arsenic, phosphorus, aluminium, manganese, and silicon are also blended in bronze to enhance its mechanical properties [1,2]. The variation in elemental composition in bronze significantly affects its mechanical and chemical characteristics [3]. Furthermore, the bronze, primarily exist in FCC (face centred cubic) crystal structure, and the different size of the tin atoms as compared to copper substantially changes this structure, which confers excellent properties. Sidot et al. reported that lattice parameter of FCC bronze unit cell increases with increase in tin content and vice versa [4]. Moreover, the influences of crystallite size on the mechanical properties of metals and alloys have been known for many years. Two scientist Hall and Petch proposed the formula, which demonstrated the inverse relation between yield strength and crystallite size [5]. Nevertheless, bronze is widely utilized in the production of bearing, operating under heavy loads at high speeds. These bearing are used in many rotating parts such as fans, jet engines, automobile parts, industrial equipment, and appliances etc. Beside this, it is also used in filters and decorative paints. Bronze powder is mainly produced via electrolysis process, vapour deposition, and high-energy ball mill method [6]. Further, it is reported that the mechanical properties in bronze can be modulated through various kind of sintering processes [7,8]. In these sintering processes, high temperature and costly equipment setup are required to achieve the desired mechanical properties. After considering of alloy properties and cost aspect, authors wanted to investigate an alternative and economically safe approach that could be beneficial in global application to modify the structural and mechanical properties of bronze powder. A physicist, William Tiller proposed the existence of a new force related to human body, in addition to four well known fundamental forces of physics: gravitational force, strong force, weak force, and electromagnetic force. Fritz-Albert, a German biophysicist proposed that human physiology shows a high degree of order and stability due to their coherent dynamic states [9-12]. Furthermore, a human has ability to harness the energy from environment/universe and can transmit into any object (living or non-living) around the globe. The objects always receive the energy and responded into useful way and that is called biofield energy. This process is known as biofield treatment. Mahendra Trivedi’s biofield treatment has been applied to transform the structural, physical, and chemical properties of various metals and ceramics [13-20]. In material science, this biofield treatment has substantially changed the particle size, surface area and lattice parameters in various ceramic powders such as vanadium pentoxide (V2O5), zirconium oxide (ZrO2), and silicon dioxide (SiO2) [18,19]. The biofield treatment has also transformed the characteristics in several other fields like biotechnology [21,22], microbiology [23-25], and in agricultural science [26-28]. Based on the outstanding results achieved by biofield treatment on different materials and considering the industrial significance of bronze powder, the present study was undertaken to evaluate the impact of biofield treatment on physical and structural properties of bronze powder.

Perspectives

In summary, the biofield treatment has significantly altered the lattice strain, crystallite size, particle size and surface morphology in bronze powder as compared to control. XRD data revealed that the unit cell volume was reduced upto 0.78% as compared to control. This could be due to compressive stress generated during high energy milling through biofield treatment. Besides this, the reduction in crystallite size upto 49.9% may lead to increase the mechanical strength of the bronze powder after biofield treatment. In addition, biofield treatment has significantly reduced the particle size upto 18.22% in bronze powder as compared to control. SEM data showed fractured surfaces in treated sample whereas welded particles were observed in control sample. Furthermore, the FT-IR analysis data suggest that there were three new peaks at 464 cm-1, 736 cm-1, and 835 cm-1 found in treated bronze as compared to control; indicated that there might be an alteration of bond properties in bronze after biofield treatment. Overall, the biofield treatment has substantially altered the characteristics of bronze at physical and structural level. Thus, it is postulated that the biofield treated bronze powder could be more useful in bearing and gear applications in automobiles.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Evaluation of Bio-field Treatment on Physical and Structural Properties of Bronze Powder, Advances in Automobile Engineering, January 2015, OMICS Publishing Group,
DOI: 10.4172/2167-7670.1000119.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page