What is it about?

Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. Methods: The control and treated DHBP samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser particle size analyser, surface area analyser, Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. Results: The XRD study indicated a slight decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control sample. However, XRD study revealed an increase in average crystallite size of the treated DHBP by 32.73% as compared to the control sample. The DSC characterization showed no significant change in the melting temperature of treated sample. The latent heat of fusion of the treated DHBP was substantially increased by 11.67% as compared to the control. However, TGA analysis showed a decrease in the maximum thermal decomposition temperature (Tmax) of the treated DHBP (257.66ºC) as compared to the control sample (260.93ºC). The particle size analysis showed a substantial increase in particle size (d50 and d99) of the treated DHBP by 41% and 15.8% as compared to the control sample. Additionally, the surface area analysis showed a decrease in surface area by 9.5% in the treated DHBP, which was supported by the particle size results. Nevertheless, FT-IR analysis showed a downward shift of methyl group stretch (2885→2835 cm-1) in the treated sample as compared to the control. The UV analysis showed a blue shift of absorption peak 323→318 nm in the treated sample (T1) as compared to the control. Conclusion: Altogether, the results showed significant changes in the physical, thermal and spectral properties of treated DHBP as compared to the control.

Featured Image

Why is it important?

Benzophenone an aromatic ketone is an important class of organic compounds used in perfumes and photochemicals. Benzophenones are used as an intermediate for the synthesis of dyes, pesticides and drugs [1]. These compounds are widely used for the synthesis of various drugs having anxiolytic, hypnotic and antihistaminic activities [2]. 2,4-dihydroxybenzophenone (DHBP) is used as UV-light absorber in resinous and polymer compositions such as polystyrene, acrylonitrile polymer and other copolymers [3]. Moreover, these UV light absorbers are also used in the preparation of sunscreen agents for cosmetic applications. DHBP has been used as promising sunscreen agent that reduces the skin damage by blocking the ultra violet light [2]. The chemical and physical stability of the pharmaceutical compounds are most desired quality attributes that directly affect its safety, efficacy, and shelf life [4]. Hence, it is required to explore some new alternate approaches that could alter the physical and chemical properties of the compounds such as DHBP. Recently biofield energy treatment has been used as a plausible approach for physicochemical modification of metals [5,6], ceramic [7], organic products [8] and pharmaceutical drugs [9]. Therefore, after considering the pharmaceutical applications of DHBP authors planned to investigate the influence of biofield energy treatment on physical, spectral and thermal properties of DHBP. The National Centre for Complementary and Alternative Medicine (NCCAM), a part of the National Institute of Health (NIH), recommends the use of Complementary and Alternative Medicine (CAM) therapies as an alternative in the healthcare sector, and about 36% of Americans regularly uses some form of CAM [10]. CAM includes numerous energy-healing therapies; biofield therapy is one of the energy medicine used worldwide to improve the health. Fritz, has first proposed the law of mass-energy interconversion and after that Einstein derived the well-known equation E=mc2 for light and mass [11,12]. Though, conversion of mass into energy is fully validated, but the inverse of this relation, i.e. energy into mass is not yet verified scientifically. Additionally, it was stated that energy exist in various forms such as kinetic, potential, electrical, magnetic, nuclear, etc. which have been generated from different sources. Similarly, neurons that are present in the human central nervous system have the ability to transmit the information in the form of electrical signals [13-16]. Hence, biofield is defined as a bioenergetic field that permeates and surrounds living organisms. Recently Prakash et al. reported that this inherent biomagnetic field around the human body can be measured by few medical techniques such as Kirlian photography, polycontrast interference photography and resonance field imaging [17]. Therefore, it is envisaged that human beings have the ability to harness the energy from the environment/Universe and can transmit into any object (living or non-living) around the Globe. The object(s) will always receive the energy and responding in a useful manner that is called biofield energy. Mr. Trivedi’s unique biofield treatment is also known as The Trivedi Effect®. It is known to transform the characteristics of various living and non-living things. Moreover, the biofield treatment has caused significant affect in different fields such as agriculture [18-20] and microbiology [21-22]. The present work is focused to study the impact of Mr. Trivedi’ biofield energy treatment on physical, thermal and spectral properties of DHBP and characterized by XRD, DSC, TGA, particle size, surface area, FT-IR and UV-visible spectroscopic analysis.

Perspectives

In summary, the XRD study showed a decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control. However, average crystallite size was increased by 32.73% in treated DHBP as compared to the control sample. It is assumed that biofield energy treatment might cause a reduction in dislocation density that lead to an increase in crystallite size in treated sample. The DSC analysis showed an increase in the latent heat of fusion of treated DHBP by 11.67% as compared to the control sample. TGA analysis indicated the decrease in thermal stability of the treated compound as compared to the control. A significant increase by 41% and 15.8% was observed in d50 and d99, respectively of the treated DHBP as compared to control sample. Additionally, the BET analysis showed a reduction in surface area (8.64%) of the treated DHBP that was due to increase in particle size of the sample. The UV spectral analysis showed alterations in absorption peak at 323→318 nm in treated sample as compared to the control. Thus, the biofield energy treatment has caused substantial changes in physical, thermal and spectral properties of DHBP.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone, Clinical Pharmacology & Biopharmaceutics, January 2015, OMICS Publishing Group,
DOI: 10.4172/2167-065x.1000145.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page