What is it about?

In the present study, the influence of biofield treatment on physical and thermal properties of Casein Enzyme Hydrolysate (CEH) and Casein Yeast Peptone (CYP) were investigated. The control and treated samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), Thermo Gravimetric Analysis (TGA), particle size and surface area analysis. The FTIR results revealed that biofield treatment has caused reduction of amide group (amide-I and amide-II) stretching vibration peak that is associated with strong intermolecular hydrogen bonding in treated CEH as compared to control. However, no significant changes were observed in FTIR spectrum of treated CYP. The TGA analysis of treated CEH showed a substantial improvement in thermal stability which was confirmed by increase in maximum thermal decomposition temperature (217°C) as compared to control (209°C). Similarly, the treated CYP also showed enhanced thermal stability as compared to control. DSC showed increase in melting temperature of treated CYP as compared to control. However the melting peak was absent in DSC of treated CEH which was probably due to rigid chain of the protein. The surface area of treated CEH was increased by 83% as compared to control. However, a decrease (7.3%) in surface area was observed in treated CYP. The particle size analysis of treated CEH showed a significant increase in average particle size (d50) and d99 value (maximum particle size below which 99% of particles are present) as compared to control sample. Similarly, the treated CYP also showed a substantial increase in d50 and d99 values which was probably due to the agglomeration of the particles which led to formation of bigger microparticles. The result showed that the biofield treated CEH and CYP could be used as a matrix for pharmaceutical applications.

Featured Image

Why is it important?

Over the last few decades, there has been continuous interest in biodegradable polymers for pharmaceutical and biomaterial applications [1]. Biodegradable polymers can be either synthetic or natural polymers. The synthetic polymers are more popular than their natural counterparts due to their excellent mechanical properties which can be used for biomedical applications. However the synthetic polymers are associated with toxicity problems which may cause problems during their intended medical use. Natural polymers are generally regarded as safe compared to synthetic polymers. Hence the natural polymers have clear advantages as drug delivery systems (DDS) [2]. Recently, protein based therapeutics, due to their excellent properties such as emulsification, foaming, gelling, and water holding ability have gained significant attention as DDS [3-6]. Moreover, the food proteins have their inherent ability to interact with wide range of bioactive compounds via functional groups present on their polypeptide structure. Hence, this offers the reversible binding of active molecules and protects them until their safe release in the human body [7,8]. Additionally, proteins are metabolizable; hydrolysis of the proteins by digestive enzymes releases the bioactive peptides that may cause a number of beneficial effects such as cardiovascular, endocrine, immune and nervous system [9,10]. Milk proteins are natural vehicles and widely explored in food industries due to their inherent nutritional and functional properties. Casein is a main structural component of milk, where it accounts for 80% of total proteins content. Casein has been utilized in the production of food, pharmaceutical formulations and cosmetics. The interesting structure and physicochemical properties allows it to be used in DDS [11]. The casein has fascinating properties such as binding of ions and small molecules, excellent emulsification, surface active, gelation and water binding capacities. Hydrolysation of protein makes changes in the composition of potential groups; hydrophobic properties and functional characteristics [12]. For example CEH is a protein that is rapidly absorbed and digested similar to whey protein. Enzyme hydrolysis was recently used to modify the protein structure in order to enhance the functional properties of proteins. However, these chemical and enzymatic treatments might induce denaturation of protein which directly affects its functional properties. Bioelectromagnetism is an area which studies the interaction of living biological cells and electromagnetic fields. Researchers have demonstrated that short lived electrical current or action potential exists in several mammalian cells such as neurons, endocrine cells and muscle cells as well as some plant cells. An Italian physicist Luigi Galvani first time observed this phenomenon in a frog where he had been working on static electricity [13]. Similarly it was believed that electromagnetic field exists around the human body and the evidence was found using some medical technologies such as electromyography, electrocardiography, and electroencephalogram. This field is known as biofield and the exposure of the said biofield has been referred hereinafter as Biofield treatment. Recently, biofield treatment was used to modify the physical, atomic and thermal properties of various ceramic, metals and carbon allotropes [14-21]. Mr. Trivedi is known to transform these materials using his biofield. The biofield treatment has also improved the production and quality of various agricultural products [22-25]. Moreover, the biofield has resulted into altered antibiotic susceptibility patterns and the biochemical characteristics of various bacteria [26-28]. Exposure to the said biofield has caused an enhancement in growth and anatomical characteristics of herbs like Pogostemon cablin that is commonly used in perfumes, in incense/insect repellents, and alternative medicine [29]. In this study, the effects of biofield treatment on two protein based organic compounds (CEH and CYP) are studied and their physicochemical properties are evaluated.

Perspectives

This study showed the influence of biofield treatment on the physical and thermal properties of the CEH and CYP. Biofield treatment did cause a significant change in structure characterization, along with an increase in particle size, melting temperature and maximum decomposition temperature as compared to control sample, which were analyzed by standard techniques. Hence we postulate that the biofield treated organic protein products (CEH and CYP) could be used either as an interesting matrix for drug delivery or as a medium for cell culture research.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeas t Peptone, Clinical Pharmacology & Biopharmaceutics, January 2015, OMICS Publishing Group,
DOI: 10.4172/2167-065x.1000138.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page