What is it about?

Aromatic amines and their derivatives are widely used in the production of dyes, cosmetics, medicines and polymers. However, they pose a threat to the environment due to their hazardous wastes as well as their carcinogenic properties. The objective of the study was to use an alternate strategy i.e. biofield energy treatment and analyse its impact on physicochemical properties of aromatic amine derivatives viz. p-phenylenediamine (PPD) and p-toluidine. For this study, both the samples were taken and divided into two parts. One part was considered as control and another part was subjected to Mr. Trivedi’s biofield treatment. After treatment, both samples were analysed for their physical, thermal and spectral properties as compared to their respective control samples. The analysis was done by using X-ray diffraction (XRD), surface area analyser, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. The XRD studies and surface area analysis of PPD sample revealed that the crystallite size and surface area of the treated sample was increased by 11.12% and 8.49%, respectively as compared to the control sample. In case of p-toluidine, the crystallite size and surface area of treated sample were decreased by 4.8% and 8.43%, respectively as compared to control. The treated PPD sample also showed an alteration in thermal degradation properties as it exhibited two-steps thermal decomposition as compared to single step decomposition in the control sample. In case of p-toluidine, the treated sample showed decreased onset temperature of degradation (112°C→100°C) and Tmax (temperature at which maximum weight loss occur) (136°C→125°C) as compared to control sample. Moreover, the FT-IR analysis revealed that C-C aromatic stretching peak in treated PPD sample was shifted to the lower frequency (1456→1444 cm-1) as compared to the control sample. Besides, in p-toluidine, the treated sample showed the alteration in frequencies of C-N-H bending, C-H bending, C-H stretching, and C-C aromatic stretching and bending peaks as compared to the control sample. However, no alteration was found in UV-Vis spectroscopic analysis of treated PPD and p-toluidine samples as compared to their respective control samples. These findings suggest that the biofield treatment significantly altered the physical, thermal and IR spectroscopic properties of PPD and p-toluidine samples.

Featured Image

Why is it important?

Aromatic amines are widely present in natural products, sulpha drugs, dyes, vitamins, amino acids, and nucleic acids [1]. Amines and its salts are known to possess bactericidal, fungicidal and algaecidal activities [2]. They are also used in manufacturing of dyes, cosmetics, medicines and rubber. Aromatic secondary amines are used as antioxidants in rubber industries [3]. Aromatic amines have growing interest in the environmental chemistry as they form hazardous waste and also considered as potential carcinogens [4]. p-Phenylenediamine (PPD) is a derivative of the aromatic amine, which is widely used in the organic and coordination chemistry. In the presence of air, it oxidizes to purple and black colour hence, it is mainly used as an ingredient of oxidative hair colouring products [5]. The mechanism is based on the alkaline peroxide oxidation where this diamine is oxidized in combination with other amino and phenolic compounds (modifiers) and gives various shades on hair [6]. Moreover, it is also used as a precursor to certain polymers, plastics and fibres, photographic developing agent and as a histological stain for some lipids [7,8]. p-Toluidine is another aromatic amine that is used in the manufacturing of various dyes, pesticides and pharmaceuticals. It is mainly demanded worldwide for the production of intermediates in pigment synthesis, for example, 4-toluidine-3-sulfonic acid (4B acid), m-nitro-p-toluidine, etc. It is also used as a reagent for lignin, nitrite and chloroglucinol [9,10]. Although these compounds have wide applications but they also create certain toxicity problems. PPD is reported to cause immunologic skin reactions and it is a very common allergen in human [11,12]. Similarly p-toluidine is reported as carcinogenic and may cause cyanosis by oxidation of iron in the haemoglobin ring and converting it to methemoglobin [13,14]. All these problems are associated with the structural properties of aromatic amine derivatives. Hence, some alternative strategies are needed that can alter the physical, thermal and structural properties of these compounds in a cost effective manner. Recently, studies reported that biofield treatment has been known to alter various properties of living organisms and non-living things. A biofield is generated in the form of electromagnetic field due to the motion of charged particles such as protons, electrons, and ions in the human body [15]. The energy associated with this field is known as biofield energy and is responsible for communicating information to and among the body. The health of living organisms can be influenced by balancing this energy from the environment through natural exchange process [16]. Biofield therapies are described by National Institute of Health (NIH) and National Centre for Complementary and Alternative Medicine (NCCAM). NCCAM includes biofield therapy as a subcategory of energy medicine among complementary and alternative medicines [17,18]. Almost 43% of the US populations and approximately one-third of the UK populations have been using either form of the healing therapies or the complementary and alternative medicine (CAM) therapy [19]. Thus, the human has the ability to harness the energy from the environment or universe and can transmit it to any living or nonliving object(s) around the Globe. The objects always receive the energy and responding to the useful way. This process is known as biofield energy treatment. Mr. Trivedi’s unique biofield energy (The Trivedi effect®) has been known for its significant impact in the field of material science research [20-22], agriculture research [23,24], microbiology research [25-27] and biotechnology research [28,29]. Hence, based on wide applications of biofield treatment, the current study was designed to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of PPD and p-toluidine.

Perspectives

The XRD results showed 11.12% increase in crystallite size in the biofield treated PPD, which suggests that biofield treatment may induce the intermolecular interactions in the treated PPD sample. However, the crystallite size of treated p-toluidine sample was decreased by 4.8% as compared to the control sample which may be a result of the fracturing of grains into subgrains caused by lattice strain produced via biofield energy. Thermal analysis data revealed that thermal decomposition of biofield treated PPD sample took place in two steps as compared to single step in the control sample. In treated p-toluidine sample, the onset temperature and Tmax was reduced as compared to the control sample. On the basis of reduction in these values, it is hypothesized that thermal decomposition of treated p-toluidine sample increased. The FT-IR analysis revealed that vibration peak corresponding to C-C aromatic stretching in treated PPD sample shifted to lower frequency. Moreover, in treated p-toluidine samples, the frequency of peaks corresponding to C-N-H bending, C-H bending, C-H stretching, disubstituted ring, and C-C aromatic stretching and bending were altered as compared to the control sample. These alterations suggest that biofield treatment might induce some changes at bonding level, which ultimately results in the change in frequencies of corresponding peaks. The overall results suggest that the biofield treatment affected the physical, thermal and spectroscopic properties of PPD and p-toluidine samples. However, further studies are needed to elucidate the impact of these findings on the uses and hazards associated with these compounds.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated p-Phenylenediamine and p-Toluidine, Journal of Environmental & Analytical Toxicology, January 2015, OMICS Publishing Group,
DOI: 10.4172/2161-0525.1000329.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page