What is it about?

p-Chloro-m-cresol(PCMC) is widely used in pharmaceutical industries as biocide and preservative. However, it faces the problems of solubility in water and photo degradation. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectral properties of PCMC. For this study, PCMC sample was divided into two groups i.e., one served as treated and other as control. The treated group received Mr. Trivedi’s biofield treatment and both control and treated samples of PCMC were characterized using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy and gas chromatography–mass spectrometry (GC-MS). The XRD result showed a 12.7% increase in crystallite size in treated samples along with increase in peak intensity as compared to control. Moreover, surface area analysis showed a 49.36% increase in surface area of treated PCMC sample as compared to control. The thermal analysis showed significant decrease (25.94%) in the latent heat of fusion in treated sample as compared to control. However, no change was found in other parameters like melting temperature, onset temperature of degradation, and Tmax (temperature at which maximum weight loss occur). The FT-IR spectroscopy did not show any significant change in treated PCMC sample as compared to control. Although, the UV-Vis spectra of treated samples showed characteristic absorption peaks at 206 and 280 nm, the peak at 280 nm was not found in control sample. The control sample showed another absorbance peak at 247 nm. GC-MS data revealed that carbon isotopic ratio (δ13C) was changed up to 204% while δ18O and δ37Cl isotopic ratio were significantly changed up to 142% in treated samples as compared to control. These findings suggest that biofield treatment has significantly altered the physical, thermal and spectroscopic properties, which can affect the solubility and stability of p-chloro-m-cresol and make it more useful as a pharmaceutical ingredient.

Featured Image

Why is it important?

p-Chloro-m-cresol (PCMC) which is also known as chlorocresol (Figure 1), is used as an external germicide and bactericide agent. It has bactericidal activity against Gram positive and Gram negative organisms, along with yeasts, moulds and spores [1]. It is also used as preservative for various pharmaceutical preparations like cosmetics, lotions, tanning agents, and topical corticosteroids [2,3]. Other than that, it is also used in glues, paints and varnishes, and leather goods [4]. Moreover, it is used widely in eye drops, injections, shampoos and emulsions due to its disinfectant and antifungal properties [5]. Its antiseptic property makes it suitable for use in heparin solutions, and in various creams for skin care and dermatological care [6,7]. Apart from that, it is reported as potent activator of Ca2+ release mediated by ruthenium red/caffeine-sensitive Ca2+ release channel in skeletal muscle sarcoplasmic reticulum [8]. Although PCMC is widely used in pharmaceutical preparations but its effectiveness was reduced due to some problems related to solubility and stability [9]. Hence some alternative strategies are needed which can modulate the physicochemical properties of PCMC. The biofield treatment is an alternative strategy which is known to alter the properties of living and non-living materials. Biofield treatment is considered under complementary and alternative medicine and based on subtle energy field called biofield energy [10-12]. The human beings are infused with this precise form of energy. It is the scientifically defined as biologically produced electromagnetic and subtle energy field that provides regulatory and communication functions within the organism [13-15]. The health of living organisms can be inflected by balancing this energy from environment through natural exchange process [16]. Thus, human has the ability to harness the energy from environment or universe and can transmit into any living or non-living object(s) around the Universe. The objects always receive the energy and responding into useful way, that is called biofield energy and the process is known as biofield treatment. Mr. Trivedi’s unique biofield treatment (The Trivedi Effect®) is known to alter the growth and yield properties of plants in the field of agriculture [17-19]. The effect of biofield treatment was also reported on plant’s growth, anatomical characteristics and adaptation in biotechnology field [20,21] and phenotypic characters of microorganisms in field of microbiology [22-24]. Besides that, the impact of biofield treatment was also reported on physical, thermal and spectral properties of various metals and organic compounds [25-27]. Hence, the current study was designed to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of PCMC.

Perspectives

The XRD study showed the increase in crystallinity as well as crystallite size (12.71%) in treated sample as compared to control. The increase in crystallinity might be due to breaking of intermolecular bonding after biofield treatment that results in more symmetrical alignment of PCMC molecules. The surface area analysis also revealed 49.54% increase in surface area which might be helpful to increase the solubility of treated PCMC as compared to control sample. The DSC analysis of treated sample showed 25.94% decrease in ΔH value as compared to control, which probably occurred due to absence of intermolecular bonding in biofield treated sample as reported in XRD studies. The UV-Vis spectroscopic study revealed that biofield treatment probably reduces the photo degradation of PCMC sample. On the other hand, the GC-MS data revealed the alteration in the isotopic ratio of δ13C, δ18O and δ37Cl and increase in abundance of δ13C, δ18O and δ37Cl in biofield treated samples as compared to control. The increased abundance of heavier isotopes suggests the increased stability of treated samples as compared to control. In spite of wide applications of PCMC, its effectiveness was reduced in presence of oils, fats or non-ionic surfactants. Also it faces solubility problem in water and can undergo the process of photo degradation which causes stability issues. Hence, on the basis of above study results, it is concluded that biofield treatment has significantly altered the physical, thermal and spectroscopic properties of PCMC which could make it more suitable with respect to increased solubility and stability profile along with reduction in problem of photo degradation.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresoln, Journal of Chemical Engineering & Process Technology, January 2015, OMICS Publishing Group,
DOI: 10.4172/2157-7048.1000249.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page