What is it about?

This research work investigated the influence of biofield treatment on Enterobacter cloacae (ATCC 13047) against antimicrobial susceptibility. Two sets of ATCC samples were taken in this experiment and denoted as A and B. ATCC A sample was revived and divided into two parts Gr. I (control) and Gr. II (revived); likewise, ATCC B was labeled as Gr. III (lyophilized). Group II and III were given with biofield treatment. The control and treatment groups of E. cloacae cells were tested with respect to antimicrobial susceptibility, biochemical reactions pattern and biotype number. The result showed significant decrease in the minimum inhibitory concentration (MIC) value of aztreonam and ceftazidime (≤ 8 µg/mL), as compared to control group (≥ 16 µg/mL). It was observed that 9% reaction was altered in the treated groups with respect to control out of the 33 biochemical reactions. Moreover, biotype number of this organism was substantially changed in group II (7731 7376) and group III (7710 3176) on day 10 as compared to control (7710 3376). The result suggested that biofield treatment had an impact on E. cloacae with respect to antimicrobial susceptibility, alteration of biochemical reactions pattern and biotype.

Featured Image

Why is it important?

Antimicrobial therapy is indicated in virtually all Enterobacter (EN) infections. The most EN species are either very resistant to many antimicrobial agents or it can develop resistance during antimicrobial therapy hence, the choice of appropriate antimicrobial agents is complicated [1]. Enterobacter cloacae, ATCC 13047 (American type culture collection) is a clinically significant Gram-negative, facultatively-anaerobic, rod-shaped bacterium. E. cloacae is a member of the normal gut flora of humans and is not usually a primary pathogen. It is sometimes associated with urinary tract and respiratory tract infections [2]. Many of the EN species have multiple antibiotic resistance that are undetectable in in vitro, which makes it difficult to treat in patients those are infected with this microbes. Based on existing literatures it was clearly mentioned that the organism E. cloacae had its resistance to aminopenicillins, aztreonam and broad-spectrum cephalosporins [3]. The organisms are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene conferring the antibiotic resistance [4]. A well-known physiologist, Willem Einthoven, in 1903 had developed electrocardiography (ECG) to measure the biofield of human body. Thus, human has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object(s) around the Globe. The objects always receive the energy and responding into useful way that is called biofield energy and the process is known as biofield treatment. Afterward, the Harold Saton Burr, had performed the detailed studies on the correlation of electric current with physiological process and concluded that every single process in the human body had an electrical significance. Recently, it was discovered that all the electrical process happening in body have strong relationship with magnetic field as required by Ampere’s law, which states that the moving charge produces magnetic fields in surrounding space [5,6]. Thus, the human body emits the electromagnetic waves in form of bio-photons, which surrounds the body and it is commonly known as biofield. Therefore, the biofield consists of electromagnetic field, being generated by moving electrically charged particles (ions, cell, molecule etc.) inside the human body. Mr. Mahendra Trivedi’s biofield treatment (The Trivedi Effect®) has been known to transform the structural, physical and chemical properties of materials in several fields like materials science [7-14], agriculture [15-17], microbiology [18-20] and biotechnology [21,22]. Biofield phenomena, it may act directly on molecular structures, changing the conformation of molecules in functionally significant ways. Besides, it may transfer bioinformation interacting directly with the energy fields of life, which is known as the biofield [23]. Due to the clinical significance of this organism, we had decided a detailed investigation was required after biofield treatment against E. cloacae. In the present work, we evaluated the effects of biofield treatment on E. cloacae in relation to antimicrobials susceptibility and biotyping based on various biochemical reactions.

Perspectives

Altogether, the biofield treatment altered the resistance property of a few antimicrobials against E. cloacae. It has been observed that there was an alteration in phenotype characteristics of E. cloacae. Mr. Trivedi’s biofield treatment could be applied to improve the sensitivity of antimicrobials against E. cloacae resistance and an alternative therapeutic approach to combat against antimicrobial resistance.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: In vitro Evaluation of Biofield Treatment on Enterobacter cloacae: Impact on Antimicrobial Susceptibility and Biotype, Journal of Bacteriology & Parasitology, January 2015, OMICS Publishing Group,
DOI: 10.4172/2155-9597.1000241.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page