What is it about?

The objective of the present study was to evaluate the impact of biofield treatment on physical, atomic, and thermal properties of lithium powder.

Featured Image

Why is it important?

XRD data showed that biofield treatment results in reduction of unit cell volume and atomic weight by 0.46% as compared to control; however density and nuclear charge per unit volume were increased by 0.45 and 0.46%, respectively as compared to control. Based on the increase in nuclear charge per unit volume in treated lithium sample, it is assumed that nuclear strength of Li+ ions might enhanced after biofield treatment. It may lead to increase the efficacy of Li+ ions in human brain as mood stabilizer. Besides, the crystallite size was increased from 62.17 nm (control) to 108.8 nm in treated lithium powder. The melting point of treated lithium was increased upto 202.21°C as compared to control (181.86°C). Further, the change in melting point can be correlated with the change in interatomic interaction of treated lithium atoms after biofield treatment. It is assumed that the change in interatomic interaction may lead to alter the interaction of Li+ ions with NO in CNS of human. In addition, TG-DTA study revealed that oxidation temperature of lithium was reduced upto 285.21°C as compared to control (358.96°C). SEM image of treated lithium sample showed the fractured and welded surface as compared to inter-particle and agglomerated boundaries in control. FT-IR result showed that, Li-O bond in treated sample (449 cm-1) was altered as compared to control (416 cm-1). Overall, data suggested that biofield treatment has altered the physical, atomic, and thermal properties of lithium powder. Therefore, it is assumed that biofield treated lithium powder could be more useful in mood stabilizer drug as compared to control.

Read the Original

This page is a summary of: Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powder, Journal of Advanced Chemical Engineering, January 2015, OMICS Publishing Group,
DOI: 10.4172/2090-4568.1000136.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page