What is it about?

Tree-covered urban green spaces, including streets, parks, and other public areas, are vital for urban sustainability and people’s well-being. However, such trees face threats from the occurrence of extreme weather. In this study, we investigated wind damage to urban trees in the city of Debrecen, Hungary, during two severe windstorms in July 2025. Field surveys were conducted across three distinct urban zones, covering approximately 515,000 m2 in total. We assessed 201 damaged and 325 undamaged trees and recorded the species, size, damage type, and contextual landscape features associated with them being damaged or not. Damage type to trees consisted primarily of broken branches, whilst uprooting and trunk breakage were recorded less often. Most tree characteristics (trunk circumference, height, systematic position, nativity) and the proximity and height of buildings upwind of focal trees were significant predictors of their vulnerability to windstorms. In addition, we surveyed 150 residents in person and received comments from 54 people via online questionnaires and explored their perceptions of storm frequency, the causes of storms, and mitigation measures. Most respondents noted increased storm frequency and attributed that to climate change, and they suggested mitigation measures focused on urban tree management and environmental protection. Some people expressed scepticism about the presence of climate change and/or their ability to address such damage on an individual basis. Our study is the first to integrate assessments of storm-related impacts on urban trees with the opinions of residents living in proximity to them. Our findings highlight the need for climate-adaptive and mechanically robust urban forestry planning and offer insights that guide the management of trees in urban areas globally. Specifically, we propose to undertake the following: (1) Prioritise structurally resilient, stress-tolerant tree species adapted to extreme weather conditions when planting new trees. (2) Integrate wind dynamics, microclimatic effects and artificial stabilisation techniques into urban design processes to optimise tree placement and their long-term stability. Urban planners, builders, developers, and homeowners should be informed about these stabilising practices and incorporate the needs of trees early in the design process, rather than as decorative additions. (3) Develop regionally calibrated risk models and early-warning systems to support proactive and data-driven tree management and public safety. (4) Promote climate literacy and public participation to strengthen collective stewardship and resilience of urban trees.

Featured Image

Read the Original

This page is a summary of: Storm-Induced Wind Damage to Urban Trees and Residents’ Perceptions: Quantifying Species and Placement to Change Best Practices, Plants, November 2025, MDPI AG,
DOI: 10.3390/plants14213366.
You can read the full text:

Read

Contributors

The following have contributed to this page