What is it about?
Compositions are permutations of partitions. A partition may be visualised by a triangle of rows of decreasing length. An important geometrical concept is the size of the largest square (the Durfee square) contained in this triangle. In the permuted object (compositions), one loses the notion of the contained square but we have reinterpreted the concept for compositions so that it still makes geometrical sense.
Featured Image
Photo by Arisa Chattasa on Unsplash
Why is it important?
This helps to unify the disparate theories of compositions and partitions. Just as a whole class of partitions is characterised by each having the same Durfee square, so a whole class of compositions is also characterised by each having the same Durfee square (in the composition sense).
Perspectives
Read the Original
This page is a summary of: Durfee squares in compositions, Discrete Mathematics and Applications, December 2018, De Gruyter,
DOI: 10.1515/dma-2018-0032.
You can read the full text:
Contributors
The following have contributed to this page