What is it about?

The date palm is mainly cultivated for the production of sweet fruit. Date palm callus initiation medium (DPCIM) is used for plant tissue culture applications. The present work is intended to evaluate the impact of Mr. Trivedi’s biofield energy treatment on physical, thermal and spectral properties of the DPCIM. The control and treated DPCIM were evaluated by various analytical techniques such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, particle size analyzer (PSA), surface area analyzer and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD analysis revealed a decrease in intensity of XRD peaks of the treated sample as compared to the control. The crystallite size of the treated DPCIM (81.02 nm) was decreased with respect to the control sample (84.99 nm). The DSC analysis showed a slight decrease in melting temperature of the treated sample. Additionally, the latent heat of fusion of treated sample was changed by 45.66% as compared to the control sample. The TGA analysis showed an increase in onset degradation temperature of the treated sample (182ºC) as compared to the control sample (142ºC). This indicated the increase in thermal stability of the treated DPCIM. PSA results demonstrated an increase in average particle size (d50) and size showed by 99% of particles (d99) by 19.2 and 40.4%, respectively as compared to the control sample. The surface area analyzer showed a decrease in surface area of treated DPCIM by 13.4%, which was well supported by the particle size results. UV spectra of the treated sample showed the disappearance of absorption peak 261 nm in treated sample as compared to the control. Overall, the result showed that biofield energy treatment has a paramount influence on physical, thermal and spectral properties of DPCIM. Therefore, it is assumed that biofield treated DPCIM could be used as a better medium for plant tissue culture applications.

Featured Image

Why is it important?

Date palm or Phoenix dactylifera is a flowering plant belongs to the family Arecaceae, cultivated for its sweet fruits [1]. The species is widely cultivated and naturalized in many tropical and subtropical regions worldwide. Dates have been used as staple food in the Middle East and Indus valley [2, 3]. Date palms have numerous health benefits as they produce antioxidant flavonoids such as β-carotene, lutein, and zeta xanthin, which have the ability to protect the cells and structures in the body from harmful effects of oxygen free radicals. Additionally, it has anticancer, anti-inflammatory and anti-hyperlipidemic activities [4]. Date palm callus initiation medium (DPCIM) is used as tissue culture medium for microbiology applications. The ingredients of this medium are presented in Table 1 [5]. Micropropagation is a true to type propagation of a selected genotype using in vitro culture techniques [6]. Plant tissue culture technology provides a mean for a rapid, large-scale multiplication of plants and has been used for the propagation of crop and ornamental plants [7]. Additionally, DPCIM can also be used for agriculture applications for improving crop production and pathogen elimination [7]. Sterilization is a process that removes all form of living organisms such as prions, viruses, fungi, bacteria, etc. from the tissue culture medium. In general autoclaving is used for sterilizing the media [8]. It was reported previously that heat treatment of complex culture medium may result in nutrient destruction either by direct thermal degradation or by reaction between the components [9]. Hence, an alternative strategies should be designed which can avoid these shortcomings and maintain the nutrient value of the culture medium. Recently, biofield treatment a plausible approach was considered as an alternative method for physicochemical modification of organic compounds [10], pharmaceutical drugs [11], and polymers [12]. The prestigious National Institute of Health (NIH)/The National Centre for Complementary and Alternative Medicine (NCCAM), permits the use of Complementary and Alternative Medicine (CAM) therapies as an alternative in the healthcare field. It was also reported that majority of patients use alternative therapies in combination with conventional medicine [13]. Recently, an area of alternative medicine that is particularly amenable to use in a complementary way is called biofield energy therapy [14]. Therefore, it is suggested that human beings have the ability to harness the energy from the surrounding environment/Universe and can transmit into any object (living or non-living) around the Globe. The object(s) always receive the energy and responding in a useful manner that is called biofield energy. Mr. Mahendra Kumar Trivedi is a well-known healer of biofield energy therapy who can alter the characteristics in various research fields such as biotechnology [15] and microbiology [16]. This unique biofield energy treatment is also known as The Trivedi Effect®. Hence, by capitalizing on the unique biofield energy treatment and properties of DPCIM as plant tissue culture medium, this research work was pursued to investigate the impact of biofield energy treatment on the physical, thermal and spectral properties of this compound. The control and treated samples were analyzed for their physicochemical properties using various analytical techniques such as X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, particle size analysis, surface area analysis and ultra violet-visible spectroscopy analysis.

Perspectives

In summary, the XRD analysis showed a decrease in crystallite size of treated DPCIM as compared to the control sample. Moreover, the intensity of the XRD peaks of treated sample was decreased with respect to the control. It is assumed that presence of micro strain causes a decrease in crystallite size of the treated sample. The DSC analysis showed a decrease in latent heat of fusion of treated sample by 45.66% with respect to the control sample. It is assumed that treated sample might be present in the high-energy state that led to an alteration in latent heat of fusion of the sample. The TGA evaluation showed a substantial increase in onset temperature of treated sample (182ºC) as compared to the control sample (142ºC). The PSA analysis results showed a substantial increase in d50 and d99 by 19.2 and 40.4% respectively with respect to control. This was well supported by surface area result that was decreased by 13.4% in the treated sample. It is presumed that the high thermal stability and bigger particle size might improve DPCIM uses as tissue culture medium. Hence, it is presumed that biofield treated DPCIM could be used as a medium for plant tissue culture applications.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Characterization of Physical, Thermal and Spectral Properties of Biofield Treated Date Palm Callus Initiation Medium, International Journal of Nutrition and Food Sciences, January 2015, Science Publishing Group,
DOI: 10.11648/j.ijnfs.20150406.20.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page