What is it about?

Phosphate buffer saline (PBS) has numerous biological and pharmaceutical applications. Hank buffer salt (HBS) has been used as a medium for tissue culture applications. This research study was aimed to investigate the influence of Mr. Trivedi’s biofield energy treatment on physicochemical properties of the PBS and HBS. The study was executed in two group’s i.e. control and treated. The control group was kept aside as control and treated group had received the biofield energy treatment. The control and treated samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD analysis indicated the increase in crystallite size by 5.20% in treated PBS as compared to the control. Similarly, the treated HBS also showed increase in crystallite size by 3.20% with respect to the control. Additionally, the treated PBS showed an increase in Bragg’s angle (2θ) as compared to the control sample. However, a decrease in Bragg’s angle of XRD peaks of the treated sample was noticed in the treated HBS. The DSC analysis of the control PBS showed melting temperature at 224.84°C; however melting temperature was not observed in the treated sample. However, DSC analysis of the treated HBS showed an increase in melting temperature (152.83°C) in comparison with the control (150.60°C). Additionally, the latent heat of fusion of the treated HBS was increased substantially by 108.83% as compared to the control. The TGA thermogram of the treated PBS showed an increase in onset of thermal degradation (212°C) as compared to the control (199°C). Whereas, the treated HBS showed less weight loss comparing with the control sample. This indicated the increase in thermal stability of the both the treated PBS and HBS samples. The FT-IR spectroscopic analysis of treated PBS showed alterations in the frequency of the functional groups such as O-H, C-H, P=O, O=P-OH, and P-OH as compared to the control. Additionally, the FT-IR spectrum of the treated HBS showed increase in frequency of calcium chloride phase (1444→1448 cm-1) as compared to the control sample. Altogether, it was observed that biofield energy treatment had caused physical, thermal and spectral changes in the treated samples as compared to the control. It is assumed that biofield energy treated PBS and HBS could be a good prospect for biological and tissue culture applications.

Featured Image

Why is it important?

Phosphate buffer saline (PBS) is a buffer solution commonly used in biological research. It is mainly a water-based salt solution containing sodium phosphate and sodium chloride. PBS is known to be isotonic to the biological cells, hence it has many applications. It has been used in laboratory protocols for dilutions, washing cell suspensions, rinsing culture flaks and plates as well as additives to cell culture media [1-6]. PBS is commercially available in different formulation with calcium and magnesium (+/+ PBS) or without (–/– PBS) [7]. Lichtenauer et al. reported that PBS might have an influence on the human peripheral mononuclear cells under different culture conditions. They elaborated that these alterations of extracellular conditions might influence several functions such as secretion of cytokines, proliferative responses and cell death [8]. Moreover, PBS-based buffers have been used in pharmaceutical industries for assessing the drug release, drug stability as well as buffer for high-performance liquid chromatography (HPLC) [9]. Additionally, PBS has also been used as a buffer in the microbial fuel cells to maintain the pH conditions and solution conductivity [10]. The salt solution has been used to maintain the medium within the physiological pH range. This is also used to maintain the intracellular and extracellular osmotic balance. Hank’s balanced salt (HBS) solution is used in cell culture applications. It is designed for use in cells maintained with less CO2 environment or CO2 free environment [11]. Stability of buffer solution is an important requirement for its intended uses in pharmaceutical and biological applications. It was reported that stability of buffer solution can be affected by temperature, chemical, light, etc. [12]. Thus, it is envisaged that stability of buffer solutions such as PBS and HBS could be improved using some alternative methods. Recently, biofield energy treatment was used as a lucrative method for physicochemical modifications of various materials. Biofield energy therapies are considered under complementary and alternative medicine (CAM). These kind of therapies contains practices based on subtle energy fields, and it is envisaged that human beings are permeated with a subtle form of energy [13]. It is believed that biofield therapies are effective in reducing stress such as daily life stress and stress of patients receiving terminal care [14]. It was reported that healing practitioners can channel the energy to the patients and confer positive results. Therefore, it is suggested that human beings have the ability to harness the energy from the environment/Universe and can transmit into any object (living or non-living) around the Globe. The object(s) will always receive the energy and responding in a useful manner that is called biofield energy. Moreover, biofield energy treatment that comes under the category of CAM therapies have been approved by the prestigious National Institute of Health (NIH)/The National Centre for Complementary and Alternative Medicine (NCCAM), as an alternative treatment in the healthcare sector [15]. Mr. Mahendra Kumar Trivedi is a well-known healer of biofield energy who can alter the physicochemical properties of materials such as metals [16], organic compound [17], drugs [18], and polymers [19]. Additionally, the biofield energy treatment is also known as The Trivedi effect® has improved the production in the field of agriculture [20] and altered the phenotypic characteristics of pathogenic microbes [21]. Therefore, after conceiving the above-mentioned outcomes of biofield energy treatment, and properties of PBS and HBS, authors, have planned to investigate the impact of biofield energy on physicochemical properties of these buffers.

Perspectives

In summary, the XRD results indicated increase in crystallite size by 5.20 and 3.20% in treated samples (PBS and HBS) as compared to the control. It is hypothesized that biofield treatment may provide thermal energy that caused increase in crystallite size with respect to the control samples (PBS and HBS). The DSC analysis showed disappearance of melting temperature in the treated PBS as compared to the control. This was perhaps due to rigid crystalline nature of the treated sample. However, the treated HBS (152.83°C) showed slight increase in the melting temperature with respect to the control (150.60°C). Additionally, the latent heat of fusion was increased substantially by 108.83% in the treated HBS sample, when compared with the control. The TGA analysis showed increase in thermal stability of the treated samples (PBS and HBS) as compared to the control. The FT-IR spectroscopic evaluation showed the alteration in frequency of functional groups such as O-H, C-H, P=O, O=P-OH, and P-OH in the treated PBS. The FT-IR spectrum of the treated HBS showed some alteration in frequency of the calcium chloride phase (1444→1448 cm-1) of the treated sample as compared to the control. Overall, the results showed that biofield treatment has changed the physical, thermal and spectral properties of the treated samples (PBS and HBS) with respect to the control. It is assumed that good thermal stability of the treated samples might make them a good candidate for biological and tissue culture applications.

Mr Mahendra Kumar Trivedi
Trivedi Global Inc.

Read the Original

This page is a summary of: Comparative Physicochemical Evaluation of Biofield Treated Phosphate Buffer Saline and Hanks Balanced Salt Medium, American Journal of BioScience, January 2015, Science Publishing Group,
DOI: 10.11648/j.ajbio.20150306.20.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page