What is it about?
This study used a suitable solvent such as deionized water and aqueous acetic acid to dissolve completely polymer blends such as gelatin: chitosan: pullulan (G: CS: PUL) with mixing ratios of 80:10:10, 60:20:20, 40:30:30, 20:40:40 respectively. The properties of natural polymer mixtures, viscosity, surface tension, and electrical conductivity were examined, and the fiber diameter and nanofiber diameters distribution were measured.
Featured Image
Photo by Tim Mossholder on Unsplash
Why is it important?
This study used a suitable solvent such as deionized water and aqueous acetic acid to dissolve completely polymer blends such as gelatin: chitosan: pullulan (G: CS: PUL) with mixing ratios of 80:10:10, 60:20:20, 40:30:30, 20:40:40 respectively. The properties of natural polymer mixtures, viscosity, surface tension, and electrical conductivity were examined, and the fiber diameter and nanofiber diameters distribution were measured. Increasing the gelatin content from 20% to 80% in the G: CS: PUL increases the properties of biopolymer solutions, such as viscosity, surface tension, and electrical conductivity 157%, 14%, and 37%, respectively. In addition, increasing the gelatin content reduces the contact angle by 55%. In other words, the average diameter of the nanofibers increased from 91.177 ± 27.162 to 212.46 ± 67.91 nm with the increase of the gelatin content by 40 % - 100% in the blends and obtaining uniform fibers without beads, which enhanced the ability of nanofibers for releasing into the aqueous media and enhancing their use in packaging food such as (80:10:10 and 60:20:20). Moreover the blend ratio 60:30:30 (G:CS: PUL) had better resistance to bacterial growth, the inhibition zone diameters were 26 and 23 mm for E. coli and S. aureus and had better average crystalline size and crystallinity.
Read the Original
This page is a summary of: Natural Biopolymer-hydrogels Nanofibers for Antibacterial Applications, Journal of Engineering Materials and Technology, August 2023, ASME International,
DOI: 10.1115/1.4063329.
You can read the full text:
Contributors
The following have contributed to this page







