What is it about?

Haloarchaea are extremophiles, generally thriving at high temperatures and salt concentrations, thus, with limited access to oxygen. As a strategy to maintain a respiratory metabolism, many halophilic archaea are capable of denitrification. Among them are members of the genus Haloferax, which are abundant in saline/hypersaline environments. Three reported haloarchaeal denitrifiers, Haloferax mediterranei, Haloferax denitrificans and Haloferax volcanii, were characterized with respect to their denitrification phenotype. A semi-automatic incubation system was used to monitor the depletion of electron acceptors and accumulation of gaseous intermediates in batch cultures under a range of conditions. Out of the species tested, only H. mediterranei was able to consistently reduce all available N-oxyanions to N2 , while the other two released significant amounts of NO and N2 O, which affect tropospheric and stratospheric chemistries respectively. The prevalence and magnitude of hypersaline ecosystems are on the rise due to climate change and anthropogenic activity. Thus, the biology of halophilic denitrifiers is inherently interesting, due to their contribution to the global nitrogen cycle, and potential application in bioremediation. This work is the first detailed physiological study of denitrification in haloarchaea, and as such a seed for our understanding of the drivers of nitrogen turnover in hypersaline systems.

Featured Image

Why is it important?

It provides new knowledge about denitrification carried our by extreme microbes

Perspectives

It's the first study about nitrogenous gases production by haloarchaea. It opens new areas of research using archaea as model organisms.

Dr Rosa María Martínez-Espinosa
University of Alicante

Read the Original

This page is a summary of: Denitrifying haloarchaea within the genus Haloferax display divergent respiratory phenotypes, with implications for their release of nitrogenous gases, Environmental Microbiology, December 2018, Wiley,
DOI: 10.1111/1462-2920.14474.
You can read the full text:

Read

Contributors

The following have contributed to this page