What is it about?

Nowadays, the world is experiencing many challenges in solving heat transfer issues in various engineering systems. However, limited approaches are available to solve such challenges. To increase heat transfer, many researchers found that the Nanofluid is one of the feasible coolant which increase the working efficiency of many engineering devices. Electronic equipment dissipates enormous amount of heat while in operation which directly affect the work efficiency. To increase the efficiency it is mandatory to remove the heat by using proper coolant. Hence, the heat pipes are employed in electronic devices to remove the heat. To enhance the heat transfer in heat pipe nano-coolants may be used. In this present work, thermophysical properties of different types of base fluids with Titanium Dioxide (TiO2) Nanoparticles have been investigated with different concentrations of Nanoparticles (1-5 % by volume) at 300K temperature. The effective thermal conductivity of Nanofluids is compared with the base fluid and the results show enhancement in thermal conductivity. The thermal conductivity of Nanofluid is increased up to 3% at 300K with 1 % by volume concentration of nanoparticles and 15% at 5% by volume of concentration as compared to Benzene (C6H6) base fluid.

Featured Image

Read the Original

This page is a summary of: Enhancement of Heat Transfer in Heat Pipes Using TiO2/Benzene Based Nano-coolants, January 2016, Institute of Electrical & Electronics Engineers (IEEE),
DOI: 10.1109/isms.2016.88.
You can read the full text:

Read

Contributors

The following have contributed to this page