What is it about?
Our proposed machine learning model contributes to improving the quality of Hire by providing a more nuanced and comprehensive analysis of candidate attributes. Instead of focusing solely on obvious factors, such as qualifications and experience, our model also considers various dimensions of fit, including person-job fit and person-organization fit. By integrating these dimensions of fit into the model, we can better predict a candidate’s potential contribution to the organization, hence enhancing the Quality of Hire.
Featured Image
Why is it important?
Our proposed machine learning model contributes to improving the quality of Hire by providing a more nuanced and comprehensive analysis of candidate attributes. Instead of focusing solely on obvious factors, such as qualifications and experience, our model also considers various dimensions of fit, including person-job fit and person-organization fit. By integrating these dimensions of fit into the model, we can better predict a candidate’s potential contribution to the organization, hence enhancing the Quality of Hire.
Perspectives
Within the scope of the investigation, the competencies of the personnel working in the IT department of one in the largest state banks of the country were used. The entire data collection includes information on 1,850 individual employees as well as 13 different characteristics. For analysis, Python’s “keras” and “seaborn” modules were used. The Gower coefficient was used to determine the distance between different records.
Melike Artar Biyiklar
Read the Original
This page is a summary of: Improving the quality of hires via the use of machine learning and an expansion of the person–environment fit theory, Management Decision, April 2024, Emerald,
DOI: 10.1108/md-12-2023-2295.
You can read the full text:
Contributors
The following have contributed to this page







