What is it about?

In 2005, Smarandache generalized the Atanassov's intuitionistic fuzzy sets (IFSs) to neutrosophic sets (NS), and other researchers introduced the notion of interval neutrosophic set (INSs), which is an instance of NS, and studied various properties. The notion of neutrosophic topology on the non-standard interval is also due to Smarandache.

Featured Image

Why is it important?

In 2005, Smarandache generalized the Atanassov's intuitionistic fuzzy sets (IFSs) to neutrosophic sets (NS), and other researchers introduced the notion of interval neutrosophic set (INSs), which is an instance of NS, and studied various properties. The notion of neutrosophic topology on the non-standard interval is also due to Smarandache. The purpose of this paper is to study relations between INSs and topology.

Perspectives

In 2005, Smarandache generalized the Atanassov's intuitionistic fuzzy sets (IFSs) to neutrosophic sets (NS), and other researchers introduced the notion of interval neutrosophic set (INSs), which is an instance of NS, and studied various properties. The notion of neutrosophic topology on the non-standard interval is also due to Smarandache. The purpose of this paper is to study relations between INSs and topology.

Francisco Gallego Lupianez
University Complutense

Read the Original

This page is a summary of: Interval neutrosophic sets and topology, Kybernetes, April 2009, Emerald,
DOI: 10.1108/03684920910944849.
You can read the full text:

Read

Contributors

The following have contributed to this page