What is it about?

There is increasing evidence for successful management of end-stage heart failure with continuous-flow left ventricular assist device (CF-LVAD) technology. However, passive flow adjustment at fixed CF-LVAD speed is susceptible to flow balancing issues as well as adverse hemodynamic effects relating to the diminished arterial pulse pressure and flow. With current therapy, flow cannot be adjusted with changes in venous return, which can vary significantly with volume status. This limits the performance and safety of CF-LVAD. Active flow adjustment strategies have been proposed to improve the synchrony between the pump and the native cardiovascular system, mimicking the Frank-Starling mechanism of the heart. These flow adjustment strategies include modulation by CF-LVAD pump speed by synchrony and maintenance of constant flow or constant pressure head, or a combination of these variables. However, none of these adjustment strategies have evolved sufficiently to gain widespread attention. Herein we review the current challenges and future directions of CF-LVAD therapy and sensor technology focusing on the development of a physiologic, long-term active flow adjustment strategy for CF-LVADs.

Featured Image

Why is it important?

There is increasing evidence for successful management of end-stage heart failure with continuous-flow left ventricular assist device (CF-LVAD) technology. However, passive flow adjustment at fixed CF-LVAD speed is susceptible to flow balancing issues as well as adverse hemodynamic effects relating to the diminished arterial pulse pressure and flow.

Read the Original

This page is a summary of: Clinical implications of physiological flow adjustment in continuous-flow left ventricular assist devices, ASAIO Journal, November 2016, Wolters Kluwer Health,
DOI: 10.1097/mat.0000000000000477.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page