What is it about?

This study describes that the current rectification ratio, R ≡ |J|(−2.0 V)/|J|(+2.0 V) for supramolecular tunneling junctions with a top-electrode of eutectic gallium indium (EGaIn) that contains a conductive thin (0.7 nm) supporting outer oxide layer (Ga2O3), increases by up to four orders of magnitude under an applied bias of >+1.0 V up to +2.5 V; these junctions did not change their electrical characteristics when biased in the voltage range of ±1.0 V. The increase in R is caused by the presence of water and ions in the supramolecular assemblies which react with the Ga2O3/EGaIn layer and increase the thickness of the Ga2O3 layer. This increase in the oxide thickness from 0.7 nm to ∼2.0 nm changed the nature of the monolayer–top-electrode contact from an ohmic to a non-ohmic contact.

Featured Image

Why is it important?

Our findings also show that the interpretation of data in studies involving applied biases of >1.0 V may be complicated by electrochemical side reactions which can be recognized by changes of the electrical characteristics as a function voltage cycling or in current retention experiments.

Read the Original

This page is a summary of: Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes, Nanoscale, July 2014, Royal Society of Chemistry,
DOI: 10.1039/c4nr02933j.
You can read the full text:

Read

Contributors

The following have contributed to this page