Spectroscopic IR, EPR, and operandoDRIFT insights into surface reaction pathways of selective reduction of NO by propene over the Co–BEAzeolite

Piotr Pietrzyk, Christophe Dujardin, Kinga Góra-Marek, Pascal Granger, Zbigniew Sojka
  • Physical Chemistry Chemical Physics, January 2012, Royal Society of Chemistry
  • DOI: 10.1039/c1cp23038g

Selective catalytic reduction of NO with propene over cobalt centers in beta zeolite

What is it about?

Interaction of a Co–BEA catalyst with individual components (NO, C3H6, CO, O2) and mixtures simulating the real feed of the selective catalytic reduction (SCR) of nitric oxide in static and pulse experiments at variable temperatures was investigated by means of IR, EPR, and operando DRIFT spectroscopy coupled with QMS/GC analysis of the products. Based on the spectroscopic operando results, a concise mechanistic scheme of the selective catalytic reduction of nitric oxide by propene, triggered by a two-electron Co(II)/Co(0) redox couple, was developed. It consists of a complex network of the sequential/parallel selective reduction steps that are interlocked by the rival nonselective oxidation of the intermediates and their thermal decomposition. It has been shown that the SCR process is initiated by the chemoselective capture of NO from the reaction mixture by the cobalt active sites leading to the cobalt(II) dinitrosyls, which in the excess of oxygen are partially oxidized to surface nitrates and nitrites. N2O is produced by semi-decomposition of the dinitrosyl intermediates on the mononuclear centers, whereas NO2via NO oxidation on the polynuclear oxo-cobalt sites. Cyanide and isocyanate species, formed together with propene oxygenates in the course of the C[double bond, length as m-dash]C bond scission, are the mechanistically pivotal reaction intermediates of C3H6 interaction with the dinitrosyles and NO3−/NO2− surface species. Dinitrogen is produced by three main reaction routes involving oxidation of cyanides by NO/NO2, reduction of dinitrosyls, nitrates, and nitrites by propene oxygenates (medium temperature range) or their reduction by carbon monoxide (high temperature range).

The following have contributed to this page: Dr Piotr Pietrzyk