What is it about?

Lethality of Plasmodium falciparum caused malaria results from ‘cytoadherence’, which is mainly effected by exported Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. Several exported P. falciparum proteins (exportome) including chaperones alongside cholesterol rich microdomains are crucial for PfEMP1 translocation to infected erythrocyte surface. An exported Hsp40 (heat shock protein 40) ‘PFA0660w’ functions as a co-chaperone of ‘PfHsp70-x’, and these co-localize to specialized intracellular mobile structures termed J-dots. Our studies attempt to understand the function of PFA0660w-PfHsp70-x chaperone pair using recombinant proteins. Biochemical assays reveal that N and C-terminal domains of PFA0660w and PfHsp70-x respectively are critical for their activity. We show the novel direct interaction of PfHsp70-x with the cytoplasmic tail of PfEMP1, and binding of PFA0660w with cholesterol. PFA0660w operates both as a chaperone and lipid binding molecule via its separate substrate and cholesterol binding sites. PfHsp70-x interacts with cholesterol bound PFA0660w and PfEMP1 simultaneously in vitro to form a complex. Collectively, our results and the past literature support the hypothesis that PFA0660w-PfHsp70-x chaperone pair assists PfEMP1 transport across the host erythrocyte through cholesterol containing ‘J-dots’. These findings further the understanding of PfEMP1 export in malaria parasites, though their in vivo validation remains to be performed.

Featured Image

Why is it important?

We explain role of PfHSP proteins in trafficking of major virulence factor PfEMP-1

Read the Original

This page is a summary of: Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’, Scientific Reports, February 2019, Springer Science + Business Media,
DOI: 10.1038/s41598-019-39217-y.
You can read the full text:

Read

Contributors

The following have contributed to this page