Featured Image

Why is it important?

The work was addressed to study the sensitivity of the enzyme carbonic anhydrase (CA) to chemical pollution in the hepatopancreas of the bioindicator organism Mytilus galloprovincialis in the context of a multimarker approach in view of ecotoxicological biomonitoring and assessment application. The study was carried out by means of a transplanting experiment in the field, using caged organisms from an initial population exposed in the field in two areas of interest: Augusta-Melilli-Priolo, an heavy polluted industrial site (eastern Sicily, Italy), and Brucoli (eastern Sicily, Italy) an area not affected by any contamination and selected as a reference site. Mussels in Augusta presented a significant increase in the digestive gland CA activity and gene expression compared to the animals caged in the control site of Brucoli. The CA response in animals from the polluted site was paralleled by proliferation/increase in the size of lysosomes, as assessed by Lysosensor green charged cells, induction of metallothionein, up-regulation of hif-α (hypoxia-inducible factor), metabolic changes associated with proteinmetabolism, and changes in the condition factor. Biological responses data were integratedwith information about sediment chemical analysis and metal residue concentration in animal soft tissues. In conclusion, obtained results highlighted the induction of CAs in the hepatopancreas of Mytilus galloprovincialis following to pollution exposure, and demonstrated its suitability to be integrated into a multimarker approach for the detection and characterization of the stress status induced by pollution exposure in this bioindicator organism.

Read the Original

This page is a summary of: Carbonic anhydrase integrated into a multimarker approach for the detection of the stress status induced by pollution exposure in Mytilus galloprovincialis: A field case study, The Science of The Total Environment, November 2019, Elsevier,
DOI: 10.1016/j.scitotenv.2019.06.446.
You can read the full text:

Read

Contributors

The following have contributed to this page