What is it about?

Thermohydraulic studies based on porous medium analogy, pertinent to dual channel Cable-in-Conduit Conductors (CICCs) used in International Thermonuclear Experimental Reactor (ITER), are explored in the present work. Dual channel CICC used in Toroidal Field (TF) Coil consists of a circular jacket in which superconducting cable bundles are placed in the annular channel separated from the central channel by a spiral. The cable bundle in the annular channel can be considered as saturated porous medium and the central channel can be viewed as clear region for thermohydraulic studies. In the present work, a 3D Computational Fluid Dynamics (CFD) analysis is performed on CICC by considering dual channel CICC as partially filled saturated porous medium. The 3D geometry was developed and meshed in GAMBIT-2.1.6, and exported to a commercial solver FLUENT -6.3.26 for further analysis. The effect of mass flow rate ( 6 - 10 g/s) of supercritical helium (SHe) on the velocity and pressure gradient distributions (axial and radial) in the transverse plane is presented. These studies resulted in estimating the mass flow repartition between the two channels and pumping power required to pump the SHe in CICC. In addition, the present CFD analysis brings a clear perspective of the phenomena of flow and heat transfer in complex geometries such as CICC.

Featured Image

Read the Original

This page is a summary of: Three dimensional CFD analysis of Cable-in-Conduit Conductors (CICCs) using porous medium approach, Cryogenics, February 2013, Elsevier,
DOI: 10.1016/j.cryogenics.2012.12.002.
You can read the full text:

Read

Contributors

The following have contributed to this page