What is it about?

By increasing mobile devices in technology and human life, using a runtime and mobile services has gotten more complex along with the composition of a large number of atomic services. Different services are provided by mobile cloud components to represent the non-functional properties as Quality of Service (QoS), which is applied by a set of standards. On the other hand, the growth of the energy-source heterogeneity in mobile clouds is an emerging challenge according to the energy saving problem in mobile nodes. In order to mobile cloud service composition as an NP-Hard problem, an efficient selection method should be taken by problem using optimal energy-aware methods that can extend the deployment and interoperability of mobile cloud components. Also, an energy-aware service composition mechanism is required to preserve high energy saving scenarios for mobile cloud components. In this paper, an energy-aware mechanism is applied to optimize mobile cloud service composition using a hybrid Shuffled Frog Leaping Algorithm and Genetic Algorithm (SFGA). Experimental results capture that the proposed mechanism improves the feasibility of the service composition with minimum energy consumption, response time, and cost for mobile cloud components against some current algorithms.

Featured Image

Why is it important?

In this paper, an energy-aware mechanism is applied to optimize mobile cloud service composition using a hybrid Shuffled Frog Leaping Algorithm and Genetic Algorithm (SFGA). Experimental results capture that the proposed mechanism improves the feasibility of the service composition with minimum energy consumption, response time, and cost for mobile cloud components against some current algorithms.

Read the Original

This page is a summary of: An energy efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment, Journal of Parallel and Distributed Computing, September 2020, Elsevier,
DOI: 10.1016/j.jpdc.2020.05.002.
You can read the full text:

Read

Contributors

Be the first to contribute to this page