What is it about?

We employed indirect rapid prototyping templating to fabricate bioactive and macroporous scaffolds for bone regeneration. This templating technique utilizes lost molds made of polycaprolactone by fused deposition modeling, in which the organic/ inorganic hybrid silica sol was filled and cured. Finally, the molds were dissolved and extracted, and the remaining macroporous hybrid glass constructs were recovered. The hybrid glass scaffolds offered a fully interconnected pore structure with 63–72% porosity measured by N2-pycnometry and Hg-intrusion. In bioactive sol–gel glasses one issue is the insufficient and inhomogeneous incorporation of calcium (II) ions. To address this problem we varied the curing conditions and tested the effect of the organic crosslinker on calcium retention. We strengthened the silica network by covalent crosslinking with trimethylolpropane ethoxylate which was functionalized with 3-(triethoxysilyl)propyl isocyanate. Those scaffolds showed compressive yield strengths of up to 12.7 MPa and compressive moduli between 18 and 288 MPa. Energy dispersive X-ray spectroscopy showed that a crosslinker content of 60% in the hybrids resulted in a homogeneous calcium distribution in the glass, in contrast to 40% where we found a layer of CaCl2 on the scaffold surface. The materials exhibited bioactivity in simulated body fluid which was monitored by scanning electron microscopy and X-ray powder diffraction.

Featured Image

Read the Original

This page is a summary of: Effects of curing and organic content on bioactivity and mechanical properties of hybrid sol–gel glass scaffolds made by indirect rapid prototyping, Journal of Sol-Gel Science and Technology, May 2017, Springer Science + Business Media,
DOI: 10.1007/s10971-017-4395-y.
You can read the full text:

Read

Resources

Contributors

The following have contributed to this page