What is it about?

The amygdala is a particular forebrain structure which is widely involved in many cognitive processes, such as attention and emotional learning, among others. The amygdala is part of the limbic system, which is critical for survival. In rats, it is located bilaterally in the medial temporal lobes, and its nuclei are similar to those of primates [1, 2]. In mammals, the amygdala is involved in the expression of many behaviours, such as fear responses, reproduction, aggressiveness and social behaviour and also in physiological processes such as modulation of the neuroendocrine and autonomic systems and homeostasis [3]. The amygdala consists of several nuclei that form a complex network of information processing. The three main nuclei of this structure are the medial, the central and the basolateral nucleus. These nuclei have complex connections with other structures; therefore it is thought that the activity of the amygdala is relevant in the modulation of some types of learning and memory [4]. In particular, the amygdala appears to participate in several complex processes underlying taste learning [5-11]. This chapter will summarize the most relevant data from animal models involving the amygdala in three complex processes underlying associative learning using a taste stimulus. The first section will aim to describe the role of the amygdala in the acquisition of the conditioned taste aversion (CTA) learning, a particular conditioning in which the subject learns to associate a novel taste stimulus with a successive visceral discomfort. The second section will review the data evidencing the role of the amygdala in the latent inhibition process of CTA that is obtained when the taste stimulus is presented to the subject several times prior to conditioning. Finally, we will discuss recent research that suggests that the participation of some cortical and subcortical structures (including the amygdala) in the influence of several contextual stimuli (such as the spatial context or time of day in the sleep/wake cycle) on the acquisition of CTA and latent inhibition of CTA. With this we hope to highlight some of the possible mechanisms of taste learning in which the different amygdaloid nuclei seem to have a specific function.

Featured Image

Read the Original

This page is a summary of: Taste Aversions, January 2018, Springer Science + Business Media,
DOI: 10.1007/978-3-319-47829-6_1485-1.
You can read the full text:

Read

Contributors

The following have contributed to this page