What is it about?

Bcl-2 family proteins are critical for the regulation of apoptosis, with the pro-apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC-a-1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT-induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynaminrelated protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT-induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT-induced cell death finally, indicating that Bax-mediated Drp1’s mitochondrial translocation is not essential for PDT-induced cell apoptosis. On the other hand, we found that protein kinase Cd (PKCd), Bim L and glycogen synthase kinase 3b (GSK3b) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1-mediated mitochondrial fission during the apoptosis caused by Photofrin-PDT.

Featured Image

Read the Original

This page is a summary of: Bax is essential for Drp1-mediated mitochondrial fission but not for mitochondrial outer membrane permeabilization caused by photodynamic therapy, Journal of Cellular Physiology, November 2010, Wiley,
DOI: 10.1002/jcp.22362.
You can read the full text:

Read

Contributors

The following have contributed to this page