All Stories

  1. Metal–Organic Frameworks with Mechanically Interlocked Pillars: Controlling Ring Dynamics in the Solid-State via a Reversible Phase Change
  2. [2]Pseudorotaxane formation between rigid Y-shaped 2,4,5-triphenylimidazolium axles and [24]crown-8 ether wheels
  3. Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks
  4. An Interwoven Metal-Organic Framework Combining Mechanically Interlocked Linkers and Interpenetrated Networks
  5. Invasive male round gobies (Neogobius melanostomus) release pheromones in their urine to attract females
  6. Mesomorphic [2]Rotaxanes: Sheltering Ionic Cores with Interlocking Components
  7. Titelbild: Heterolytic Activation of H2Using a Mechanically Interlocked Molecule as a Frustrated Lewis Base (Angew. Chem. 3/2013)
  8. Cover Picture: Heterolytic Activation of H2Using a Mechanically Interlocked Molecule as a Frustrated Lewis Base (Angew. Chem. Int. Ed. 3/2013)
  9. Heterolytic Activation of H2Using a Mechanically Interlocked Molecule as a Frustrated Lewis Base
  10. Heterolytic Activation of H 2 Using a Mechanically Interlocked Molecule as a Frustrated Lewis Base
  11. ChemInform Abstract: Coordination Polymers Containing Rotaxane Linkers
  12. Metal–organic frameworks with dynamic interlocked components
  13. [2]Pseudorotaxanes from T-Shaped Benzimidazolium Axles and [24]Crown-8 Wheels
  14. Metal Complexes as Receptors
  15. Molecular Shuttling of a Compact and Rigid H‐Shaped [2]Rotaxane
  16. Molecular Shuttling of a Compact and Rigid H-Shaped [2]Rotaxane
  17. Coordination polymers containing rotaxane linkers
  18. Reactions of substituted pyridines with electrophilic boranes
  19. [2]Pseudorotaxanes, [2]rotaxanes and metal–organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels
  20. Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles
  21. Rotaxanes Based on the 1,2‐Bis(pyridinio)ethane–24‐Crown‐8 Templating Motif
  22. Linking [2]rotaxane wheels to create a new type of metal organic rotaxane framework
  23. Colour coding the co-conformations of a [2]rotaxane flip-switch
  24. A tetrapyridine ligand with a rigid tetrahedral core forms metal–organic frameworks with PtS type architecture
  25. Complexes of a [2]rotaxane ligand with terminal terpyridine groups
  26. ChemInform Abstract: Metal‐Based Anion Receptors: An Application of Second‐Sphere Coordination
  27. One-, Two- and Three-Periodic Metal-Organic Rotaxane Frameworks (MORFs): Linking Cationic Transition-Metal Nodes with an Anionic Rotaxane Ligand
  28. ChemInform Abstract: Second-Sphere Coordination
  29. A [2]Rotaxane Flip Switch Driven by Coordination Geometry
  30. A [2]Rotaxane Flip Switch Driven by Coordination Geometry
  31. ChemInform Abstract: 1,2-Bis(4,4′-dipyridinium)ethane: A Versatile Dication for the Formation of [2]Rotaxanes with Dibenzo-24-crown-8 Ether.
  32. ChemInform Abstract: Rotaxanes as Ligands for Molecular Machines and Metal‐Organic Frameworks
  33. The Effect of Incorporating Fréchet Dendrons into Rotaxanes and Molecular Shuttles Containing the 1,2‐Bis(pyridinium)ethane⊂[24]Crown‐8 Templating Motif
  34. Metal-based anion receptors: an application of second-sphere coordination
  35. Ferrocene substituted thiacyclophanes: Synthesis, electrochemistry and structure of 6-ethynylferrocene-2,11-dithia[3.3]orthocyclophane
  36. Eliminating the need for independent counterions in the construction of metal–organic rotaxane frameworks (MORFs)
  37. ChemInform Abstract: Characterization of a Slippage Stopper for the 1,2‐Bis(pyridinium)ethane‐[24]crown‐8 Ether [2]Pseudorotaxane Motif.
  38. Characterization of a slippage stopper for the 1,2-bis(pyridinium)ethane–[24]crown-8 ether [2]pseudorotaxane motif
  39. Rotaxanes as Ligands for Molecular Machines and Metal–Organic Frameworks
  40. Metal–organic anion receptors: trans-functionalised platinum complexes
  41. Controlling the ON/OFF threading of a terpyridine containing [2]pseudorotaxane ligand via changes in coordination geometry
  42. Cooperative Ion–Ion Interactions in the Formation of Interpenetrated Molecules
  43. Cooperative Ion–Ion Interactions in the Formation of Interpenetrated Molecules
  44. Rotaxanes as Ligands: From Molecules to Materials
  45. The Missing Link: A 2D Metal-Organic Rotaxane Framework (MORF) with One Rotaxane Linker and One Naked Linker
  46. Rotaxanes as ligands: from molecules to materials
  47. Optically sensed, molecular shuttles driven by acid–base chemistry
  48. 4,4′-Bipyridine-N-monoxide. A hybrid ligand for building networks using a combination of metal–ligand and hydrogen-bonding interactions
  49. Coordination polymers with 4,4′-bipyrimidine. Using a combination of endo- and exodentate donors to build a one-dimensional Ag(i) ladder and a heterometallic Co(ii)Ag(i)2 network
  50. Push−Pull [2]Pseudorotaxanes. Electronic Control of Threading by Switching ON/OFF an Intramolecular Charge Transfer
  51. Wire‐Type Ruthenium(II) Complexes with Terpyridine‐Containing [2]Rotaxanes as Ligands: Synthesis, Characterization, and Photophysical Properties
  52. Palladium(II) Compounds with Fluorinated Pincer‐Type (SCS) Ligands: X‐ray Structures of C6H4‐1,3‐(CH2SC6H4F‐4)2 and [PdCl(SCS–Rf)] [Rf = C6H
  53. [2]Pseudorotaxane Formation with N‐Benzylanilinium Axles and 24‐Crown‐8 Ether Wheels.
  54. A mechanical “flip-switch”. Interconversion between co-conformations of a [2]rotaxane with a single recognition site
  55. A versatile template for the formation of [2]pseudorotaxanes. 1,2-Bis(pyridinium)ethane axles and 24-crown-8 ether wheels
  56. Silver(I) Complexes of 2,2′;6′,4″-Terpyridine: The Formation of Discrete Dimers versus Helical Polymers is Anion Dependent
  57. [2]Pseudorotaxane Formation with N-Benzylanilinium Axles and 24-Crown-8 Ether Wheels
  58. Metal-Organic Rotaxane Frameworks: Three-Dimensional Polyrotaxanes from Lanthanide-Ion Nodes, PyridiniumN-Oxide Axles, and Crown-Ether Wheels
  59. Metal-Organic Rotaxane Frameworks: Three-Dimensional Polyrotaxanes from Lanthanide-Ion Nodes, PyridiniumN-Oxide Axles, and Crown-Ether Wheels
  60. NH vs. CH hydrogen bond formation in metal–organic anion receptors containing pyrrolylpyridine ligands
  61. Metal–organic rotaxane frameworks; MORFs
  62. Branched [n]rotaxanes (n = 2–4) from multiple dibenzo-24-crown-8 ether wheels and 1,2-bis(4,4′-dipyridinium)ethane axles
  63. Metal−Organic Anion Receptors:  Arranging Urea Hydrogen-Bond Donors to Encapsulate Sulfate Ions
  64. Host–guest interactions template: the synthesis of a [3]catenane
  65. [2]Rotaxanes containing pyridinium–phosphonium axles and 24-crown-8 ether wheels
  66. Channels and Cavities Lined with Interlocked Components: Metal-Based Polyrotaxanes That Utilize Pyridinium Axles and Crown Ether Wheels as Ligands
  67. Iron(ii) complexes utilising terpyridine containing [2]rotaxanes as ligands
  68. Hydrogen-Bonded Networks through Second-Sphere Coordination
  69. Cover Picture: Chem. Eur. J. 22/2002
  70. ChemInform Abstract: Pseudo‐polyrotaxanes Based on a Protonated Version of the 1,2‐Bis(4,4′‐bipyridinium)ethane‐24‐crown‐8 Ether Motif.
  71. Conformational Behavior and Coordination Chemistry of 2,11-Dithia[3.3]orthocyclophane with Platinum Group Metals
  72. Pseudo-polyrotaxanes based on a protonated version of the 1,2-bis(4,4′-bipyridinium)ethane–24-crown-8 ether motif
  73. Amido complexes of platinum(II) as receptors for the nitrate ion
  74. Molecular squares, rectangles and infinite helical chains utilising the simple ‘corner’ ligand 4-(2-pyridyl)-pyrimidine
  75. Zwitterionic [2]rotaxanes utilising anionic transition metal stoppers
  76. Platinum(ii) nicotinamide complexes as receptors for oxo-anions
  77. Calixarene Metalloreceptors: Demonstration of Size and Shape Selectivity inside a Calixarene Cavity
  78. [3]Rotaxanes employing multiple 1,2-bis(pyridinium) ethane binding sites and dibenzo-24-crown-8 ethers
  79. [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers
  80. ChemInform Abstract: Combining Thiacyclophane and Benzocrown Ether Binding Sites in the Design of Haptoselective Ligands and Metalloreceptors.
  81. Combining thiacyclophane and benzocrown ether binding sites in the design of haptoselective ligands and metalloreceptors
  82. A New Motif for the Self-Assembly of [2]Pseudorotaxanes; 1,2-Bis(pyridinium)ethane Axles and [24]Crown-8 Ether Wheels
  83. Mono- versus Dipalladation of the Durene-Based Tetrathioether Ligand 1,2,4,5-(tBuSCH2)4C6H2. Structures of [PdCl((tBuSCH2)4C6H)] and [Pd2((tBuS...
  84. Supramolecular Arrays of 4,7-Phenanthroline Complexes: Self-Assembly of Molecular Pd6 Hexagons
  85. Supramolecular Arrays of 4,7-Phenanthroline Complexes: Self-Assembly of Molecular Pd6 Hexagons
  86. Verbände von Komplexen mit 4,7-Phenanthrolin-Liganden: Selbstorganisation von molekularen Pd6-Sechsecken
  87. 1,2-Bis(4,4′-dipyridinium)ethane: a versatile dication for the formation of [2]rotaxanes with dibenzo-24-crown-8 ether
  88. Calixarene Metalloreceptors. Synthesis and Molecular Recognition Properties of Upper-Rim Functionalized Calix[4]arenes Containing an Organopalladium Binding Site
  89. Molecular Receptors for Adenine and Guanine Employing Metal Coordination, Hydrogen-Bonding and π-Stacking Interactions
  90. Bis(amido)calix[4]arenes in the pinched cone conformation as tuneable hydrogen-bonding anion receptors
  91. Platinum(II) complexes of the tridentate thioether ligands RS(CH 2 ) 3 S(CH 2 ) 3 SR (R = Et, iPr, Ph). Structures of [PtCl (iPrS(CH 2 ) 3 S(CH 2 ) 3 SiPr)][BF 4 ], [PtI(PhS(CH 2 ) 3 S(CH 2 ) 2 SPh)][BF 4 ], and [Pt(PPh 3 )(iPrS(CH 2 ) 3 S(CH 2 ) 3 Si...
  92. Tetranuclear Ag(I) complexes with an octagonal Ag4S4 core: building large structures from small macrocycles
  93. Transition Metal Complexes as Both Host and Guest: Second-Sphere Coordination between a Pt-Azacrown Ether Host and a Pt-NH3 Guest
  94. Calixarene metalloreceptor. Upper-rim functionalized calix[4]arenas containing an organopalladium binding site
  95. Übergangsmetallkomplexe als Wirt und als Gast: Koordination eines Platin-Ammin-Komplexes in zweiter Sphäre an einen Platin-haltigen Azakronenether
  96. Simultaneous First- and Second-Sphere Coordination. Organopalladium Metalloreceptors for Water, Ammonia, Amines, Hydrazine, and the Hydrazinium Ion
  97. Silver(I)-Selective Thioether Ligands. Solution NMR and X-ray Structural Studies on the Interaction of 2,5,8-Trithia[9]-m-cyclophane and Related Ligands with Silver(I)
  98. Unusual Interaction of Ag+ with an Organopalladium Crown Ether. Synthesis and Structures of [PdCl(L)] and [Pd(H2O)(L)(Ag)][CF3SO3]2 (L = 5,8,11-Trioxa-2,14-dithia-[15]-m-cyclophane)
  99. Ruthenium(II) complexes of the thiacyclophane ligands 2,5,8-trithia[9]-o-cyclophane (TT[9]OC) and 5-oxa-2,8-dithia[9]-o-cyclophane (ODT[9]OC). Structures of RuCl2(DMSO)(TT[9]OC) and RuCl2(PPh3)(ODT[9]OC)
  100. Properties and Structures of Thallium(I) Derivatives of Aromatic Diols
  101. Simultaneous First- and Second-Sphere Coordination. Organopalladium Crown Ether Complexes as Metalloreceptors for o-Aminopyridine Derivatives
  102. Ditopic thiacyclophanes containing the S(CH2)2X(CH2)2S (X = O, S) linkage. Synthesis and structures of 2,5,8,17,20,23-hexathia[9](1,2)[9](4,5)cyclophane and 5,20-dioxa-2,8,17,23-tetrathia[9](1,3)[9](4,6)-2,5-...
  103. Large-Ring S6-Thiacyclophanes as Ditopic Macrocycles. Synthesis and Structures of 2,5,8,17,20,23-Hexathia[9.9]-o-cyclophane, HT[9.9]OC, 2,5,8,17,20,23-Hexathia[9.9]-m-cyclophane, HT[9.9]MC, and [Ag2(CH3CN)2(HT[9.9]OC)][BF4]2
  104. Thiacyclophane Complexes of Rhodium and Iridium. Synthesis, Structure, and Reactivity of [M(COD)(L)][BF4] (M = Rh, Ir; L = 2,5,8-Trithia[9]-o-cyclophane (TT[9]OC), 5-Oxa-2,8-dithia[9]-o-cyclophane (ODT[9]OC))
  105. Molecular recognition of nucleobases via simultaneous first- and second-sphere coordination
  106. Ditopic crown thioethers. Synthesis and structures of anti-[Cu2(L)(PPh2Me)2][ClO4]2, syn-[Cu2(L)(.mu.-PPh2CH2CH2PPh2)][PF6]2, and anti-[Ag2(L)(PPh3)2][BF4]2 (L = 2,5,8,17,20,23-hexathia[9](1,2)[9](4,5)cyclophane)
  107. Coordination chemistry of the tetrathiacyclophane ligand 2,5,14,17-tetrathia[6.6]-o-cyclophane, TT[6.6]OC. Synthesis and structures of TT[6.6]OC and [Pt(TT[6.6]OC)] [BF4]2
  108. Receptors for the hydrazinium ion. Simultaneous first- and second-sphere coordination inside organopalladium crown ether complexes
  109. Dimetallated thioether complexes as building blocks for organometallic coordination polymers and aggregates
  110. Metalation of the crown thioether ligand 2,6,10-trithia[11]-m-cyclophane (TT[11]MC). Synthesis, structure, and reactivity of [Pt(TT[11]MC)][BF4] and structures of [Pt(PPh2Me)(TT[11]MC)][BF4] and [PtI2(TT[11]MC)][BF4]
  111. Thiacyclophanes containing the -S(CH2)3S(CH2)3S- linkage. Synthesis and structures of 2,6,10-trithia[11]-o-cyclophane (TT[ll]OC), 2,6,10-trithia[11]-m-cyclophane (TT[11]MC), and the palladation product [Pd(TT[11]MC)][BF4]
  112. Exodentate versus endodentate coordination of a crown thioether ligand in silver(I) complexes of 2,5,8-trithia[9]-o-benzenophane (TT[9]OB). Structures of [Ag(TT[9]OB)2][X] (X = ClO4, BPh4, CF3SO3)
  113. Synthesis of Bis-Crown Thioethers Containing a Common Aromatic Unit. Regioselectivity Based on the Length of the -S(CH 2 ) n S(CH 2 ) n S-Chain
  114. Dependence of complex structure on ligand conformation in palladium(II) complexes of the crown thioether ligands 2,5,8-trithia[9]-o-benzenophane (TT[9]OB) and 2,5,8-trithia[9]-m-benzenophane (TT[9]MB). Structures of PdCl2(TT[9]OB).cntdot.DMSO and PdCl2...
  115. Encapsulation of silver(I) by the crown thioether ligand 1,3,6,9,11,14-hexathiacyclohexadecane (16S6). Synthesis and structure of [Ag(16S6)][ClO4]
  116. Complexes of the crown thioether ligand 2,5,8-trithia[9]-o-benzenophane, (TT[9]OB). Synthesis and molecular structure of [Cu(NCS)(TT[9]OB)]
  117. Ditopic crown thioethers. Synthesis and structures of anti-[Cu2(L1)(PPh2Me)2][ClO4]2and syn-[Cu2(L1)(µ-PPh2CH2CH2PPh2)][...
  118. Metallation of a crown thioether ligand. Synthesis, structure and reactivity of [Pt(L1)][BF4] and structure of [PtI2(L1)][BF4](L1= 2,6,10-trithia[11]-m-benezenophane)
  119. Copper(I) and silver(I) complexes of the crown thioether ligand 2,5,8-trithia[9]-o-benzenophane (TT[9]OB). Structures of [Cu(PPh2Me)(TT[9]OB)][ClO4] and [Ag(PPh3)(TT[9]OB)][ClO4]
  120. Crown thioether ligands containing rigid xylyl units. Synthesis and structures of 2,5,8-trithia[9]-o-benzenophane (TTOB), 2,5,8-trithia[9]-m-benzenophane (TTMB) and fac-Mo(CO)3(TTOB).DMSO
  121. Dihydride formation versus H2-elimination in the protonation of the heterobimetallic FePt complex (CO)3Fe(μ-H)(μ-PCy2)Pt(PEt3)2
  122. Simultaneous coordination of the endo- and exo-conformations of a crown thioether ligand to a single metal centre; synthesis and structure of [Ag(L1)2][CF3SO3], where L1= 2,5,8-trithia[9]ortho-benzenophane
  123. Synthesis and structural characterization of the crown thioether 1,3,6,9,11,14-hexathiacyclohexadecane (16S6) and the copper(I) complex [Cu(16S6)][ClO4]
  124. Synthesis and reaction chemistry of the heterobimetallic FeIr complexes (CO)3(PPh3)Fe(μ-PCy2)Ir(PPh3)(CO)2 and (CO)4Fe(μ-PCy2)Ir(1,5-COD)
  125. (CO)(Pet3)ClIr(μ-Pcy2)2IrCl(Pet3)(CO), a phosphido-bridged bimetallic iridium(II) complex
  126. Synthesis and reaction chemistry of the coordinatively unsaturated heterobimetallic complexes (CO)3(PPh3)Fe(.mu.-PCy2)Rh(PPh3)(CO) and (CO)4Fe(.mu.-PCy2)Rh(1,5-COD). Crystal and molecular structure of (CO)3(PPh3)Fe(.mu.-PCy2)Rh(PPh3)(CO)
  127. Mononuclear Rh, Ir, Pd, and Pt complexes of the tripod ligand (Ph2P)3CH.The molecular structure of bis[1,1,1-tris(diphenylphosphino)methane]platinum(II) tetrafluoroborate
  128. Heterobimetallic dicyclohexylphosphido-bridged complexes of MoNi, MoPd, MoPt, WNi, WPd, and WPt. Crystal and molecular structure of bis(.mu.-dicyclohexylphosphido)(triphenylphosphine)(tetracarbonylmolybdenum)palladium (Mo-Pd)
  129. Diazoalkane activation by iridium phosphine compounds. 1. Complexes containing the intact dibenzoyldiazomethane ligand and interconversion between the .eta.1-N-bound and chelated N,O-bound form of the ligand accompanied by hydride migration
  130. Diazoalkane activation by iridium phosphine compounds. 2. Unusual products resulting from nitrogen loss from the dibenzoyldiazomethane ligand: structures of cyclic-[IrCl[HC(COPh)2](PC6H4Ph2)(PPh3)].1/2PhMe and cyclic-[IrCl[(C6H4)COCCPhOPPh2](PPh3)2].PhMe
  131. Coordination modes of polydentate ligands. 4. The crystal and molecular structure of an oxo-bridged iron(III) complex containing a pentadentate imino-alkoxy ligand
  132. Structure of [Rh2(CO)2(.mu.-C2CMe3)(Ph2PCH2PPh2)2]ClO4].cntdot.O.866CH2Cl2: an "A-frame" compound containing a .sigma.,.pi.-acetylido group
  133. The molecular structure of Rh2Cl2(μ-CO)(μ-(C6H52PCH2P(C6H5)2)·2C6H6: A rhodium ‘a-frame’ complex
  134. Coordination modes of polydentate ligands. 2. Template synthesis of four-, five-, and six-coordinate fluorinated Schiff-base complexes of nickel(2+): structure of an octahedral nickel(2+) complex containing two tridentate ligands
  135. Coordination modes of polydentate ligands. 1. Template synthesis of complexes of nickel(2+), copper(2+), and cobalt(2+) with pentadentate and hexadentate ligands: structure of a highly distorted six-coordinate cobalt(2+) complex
  136. Synthesis, structure, absolute configuration, and magnetic studies of some copper(II) complexes of chiral bidentate and tridentate fluorinated aminoalkoxy ligands
  137. Unexpected ortho-metalated products resulting from dibenzoyldiazomethane activation in the presence of iridium phosphine complexes
  138. Coordination modes of some fluorinated, potentially polydentate, ligands
  139. Synthesis and magnetic properties of some chiral tetranuclear imino-alkoxy complexes of copper(II)
  140. Fluorinated alkoxides. 16. Structure of a dinuclear imino alkoxy complex of copper(II)
  141. Crystal and molecular structures of bis[.mu.-9,9,9-trifluoro-8-(trifluoromethyl)-6-methyl-5-azanon-5-ene-1,8-diolato(2-)-.mu.-0,N,0']-dicopper(II), Cu2C20H26F12N2O4, and bis[.mu.-8,8,8-trifluoro-7-(trifluoromethyl)-5-methyl-4-azaoct-4-ene-1,7-diolato(2...
  142. Template synthesis and crystal and molecular structure of bis[1,1,1,12,12,12-hexafluoro-2,11-bis(trifluoromethyl)-4,9-dimethyl-2,11-diolato-5,8-diazadodeca-4,8-diene(2-)]cerium(IV), CeC28H28F24O4N4. A fluorinated Schiff base complex of eight-coordinate...
  143. Fluorinated alkoxides. 15. Synthesis and hydrogenation of iminoalkoxy complexes of copper(2+). Influence of chelate ring size on structure and magnetic properties
  144. Fluorinated alkoxides. Part XII. Studies on potentially tridentate fluorinated diols; zwitterionic and five-coordinate complexes of Ni2+ and Cu2+