All Stories

  1. On computation of Darboux polynomials for full Toda lattice
  2. On Tensor Invariants of the Clebsch System
  3. О тензорных инвариантах для интегрируемых случаев движения твердого тела Эйлера, Лагранжа и Ковалевской
  4. Experimental study of tensor invariants of Hamiltonian systems
  5. Rotations and Integrability
  6. Об инвариантных относительно вращений интегрируемых системах
  7. Second order Killing tensors related to symmetric spaces
  8. On a class of quadratic conservation laws for Newton equations in Euclidean space
  9. Equivalent Integrable Metrics on the Sphere with Quartic Invariants
  10. Reducible Abelian varieties and Lax matrices for Euler’s problem of two fixed centres
  11. On integrable systems outside Nijenhuis and Haantjes geometry
  12. О тензорах Киллинга в трехмерном eвклидовом пространстве
  13. Reduction of Divisors and the Clebsch System
  14. On two-dimensional Hamiltonian systems with sixth-order integrals of motion
  15. On inhomogeneous nonholonomic Bilimovich system
  16. О шаре Чаплыгина в соленоидальном поле
  17. On the Bilimovich System with inhomogeneous non-stationary nonholonomic relation
  18. Reduction of divisors for classical superintegrable GL(3) magnetic chain
  19. Discretization and superintegrability all rolled into one
  20. On a Time-Dependent Nonholonomic Oscillator
  21. О гипотезе Мищенко — Фоменко для обобщённого осциллятора и системы Кеплера
  22. The Motion of a Nonholonomic Chaplygin Sphere in a Magnetic Field, the Grioli Problem, and the Barnett–London Effect
  23. Superintegrable systems and Riemann-Roch theorem
  24. On the Nonholonomic Routh Sphere in a Magnetic Field
  25. Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh
  26. On the Chaplygin Sphere in a Magnetic Field
  27. The Kepler Problem: Polynomial Algebra of Nonpolynomial First Integrals
  28. Superintegrable Systems with Algebraic and Rational Integrals of Motion
  29. Elliptic curve arithmetic and superintegrable systems
  30. О суперинтегрируемых системax c алгебраическими и рациональными интегралами движения
  31. Transformation of the Stäckel matrices preserving superintegrability
  32. Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane
  33. Discretization of Hamiltonian Systems and Intersection Theory
  34. On Discretization of the Euler Top
  35. On superintegrable systems separable in Cartesian coordinates
  36. On exact discretization of cubic-quintic Duffing oscillator
  37. Bäcklund transformations and divisor doubling
  38. Bäcklund Transformations and New Integrable Systems on the Plane
  39. Duffing Oscillator and Elliptic Curve Cryptography
  40. Bäcklund transformations for the Jacobi system on an ellipsoid
  41. Integrable discretization and deformation of the nonholonomic Chaplygin ball
  42. New bi-Hamiltonian systems on the plane
  43. Bäcklund transformations for the nonholonomic Veselova system
  44. On an integrable system on a plane with an integral of motion of sixth order in momenta
  45. Integrability of Nonholonomic Heisenberg Type Systems
  46. Abel’s theorem and Bäcklund transformations for the Hamilton-Jacobi equations
  47. On a family of Bäcklund transformations
  48. Two integrable systems with integrals of motion of degree four
  49. On an integrable system on the plane with velocity-dependent potential
  50. On auto and hetero Bäcklund transformations for the Hénon–Heiles systems
  51. On Integrable Perturbations of Some Nonholonomic Systems
  52. Killing tensors with nonvanishing Haantjes torsion and integrable systems
  53. Bäcklund transformations relating different Hamilton-Jacobi equations
  54. On the Chaplygin system on the sphere with velocity dependent potential
  55. On bi-Hamiltonian formulation of the perturbed Kepler problem
  56. О преобразованиях Беклунда, связывающих различные уравнения Гамильтона - Якоби
  57. Simultaneous separation for the Neumann and Chaplygin systems
  58. Poisson structures for two nonholonomic systems with partially reduced symmetries
  59. Non-holonomic dynamics and Poisson geometry
  60. On the Lie integrability theorem for the Chaplygin ball
  61. On the nonlinear Poisson bracket arising in nonholonomic mechanics
  62. Separation of variables for some systems with a fourth-order integral of motion
  63. On the chaplygin problem of the rolling of a ball
  64. ON GENERALIZED NONHOLONOMIC CHAPLYGIN SPHERE PROBLEM
  65. On a Trivial Family of Noncommutative Integrable Systems
  66. On the Routh sphere problem
  67. One family of conformally Hamiltonian systems
  68. On the Poisson structures for the nonholonomic Chaplygin and Veselova problems
  69. Superintegrable Stäckel Systems on the Plane: Elliptic and Parabolic Coordinates
  70. On One Integrable System With a Cubic First Integral
  71. New Variables of Separation for the Steklov-Lyapunov System
  72. One invariant measure and different poisson brackets for two non-holonomic systems
  73. Об одном семействе конформно-гамильтоновых систем
  74. Integrable Euler top and nonholonomic Chaplygin ball
  75. On algebraic construction of certain integrable and super-integrable systems
  76. Integrable systems on the sphere associated with genus three algebraic curves
  77. Separation of variables for the generalized Henon–Heiles system and system with quartic potential
  78. On natural Poisson bivectors on the sphere
  79. ON BI-INTEGRABLE NATURAL HAMILTONIAN SYSTEMS ON RIEMANNIAN MANIFOLDS
  80. New variables of separation for particular case of the Kowalevski top
  81. On the generalized Chaplygin system
  82. On the superintegrable Richelot systems
  83. 10.1007/s11819-008-1005-1
  84. Change of the time for the periodic Toda lattices and natural systems on the plane with higher order integrals of motion
  85. Leonard Euler: Addition theorems and superintegrable systems
  86. On the bi-Hamiltonian structure of the Goryachev system on the sphere
  87. On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion
  88. On Euler superintegrable systems
  89. New lax pair for restricted multiple three wave interaction system, quasiperiodic solutions and bi-Hamiltonian structure
  90. Addition theorems and superintegrable systems
  91. Addition theorems and the Drach superintegrable systems
  92. On bi-Hamiltonian geometry of the Lagrange top
  93. On maximally superintegrable systems
  94. The Poisson bracket compatible with the classical reflection equation algebra
  95. On bi-hamiltonian structure of some integrable systems on so* (4)
  96. Separation of variables for a pair of integrable systems on so*(4)
  97. Darboux-Nijenhuis variables for open generalized Toda chains
  98. On two different bi-Hamiltonian structures for the Toda lattice
  99. Classification of compatible Lie-Poisson brackets on the manifold e*(3)
  100. A family of the Poisson brackets compatible with the Sklyanin bracket
  101. Compatible Lie-Poisson brackets on the Lie algebras e(3) and so(4)
  102. On classical r matrix for the Kowalevski gyrostat on so(4)
  103. On the Darboux-Nijenhuis Variables for the Open Toda Lattice
  104. Bi-Hamiltonian systems of natural form
  105. A note on elliptic coordinates on the Lie algebrae(3)
  106. Isomorphism of integrable cases of the Euler equations on the bi-Hamiltonian manifolds e(3) and so(4)
  107. A new integrable system onS2with the second integral quartic in the momenta
  108. On a family of integrable systems on S2 with a cubic integral of motion
  109. A Family of Integrable Systems on a Sphere
  110. Toda Chains in the Jacobi Method
  111. Integrable systems onso(4) related toXXXspin chains with boundaries
  112. Poisson maps and integrable deformations of the Kowalevski top
  113. Separation of variables for integrable systems on Poisson manifolds
  114. The Maupertuis Principle and Canonical Transformations of the Extended Phase Space
  115. Degenerate integrable systems on the plane with a cubic integral of motion
  116. An integrable system related to the spherical top and the Toda chain
  117. Properties of the canonical transformations of the time for the Toda lattice and the Henon-Heiles system
  118. On integrable deformations of the spherical top
  119. Automorphisms of sl(2) and classical integrable systems
  120. Dynamical boundary conditions for integrable lattices
  121. Automorphisms of sl(2) and dynamical r-matrices
  122. The classicalr-matrix method and superintegrable systems
  123. Quantum relativistic Toda chains
  124. Linear r-matrix algebra for classical separable systems
  125. Infinite series of Lie algebras and boundary conditions for integrable systems